_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-tsdyn 11.0.5.2
Propagated dependencies: r-vars@1.6-1 r-urca@1.3-4 r-tserieschaos@0.1-13.1 r-tseries@0.10-58 r-nnet@7.3-19 r-mnormt@2.1.1 r-mgcv@1.9-1 r-matrix@1.7-1 r-mass@7.3-61 r-generics@0.1.3 r-forecast@8.23.0 r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/MatthieuStigler/tsDyn/wiki
Licenses: GPL 2+
Synopsis: Nonlinear Time Series Models with Regime Switching
Description:

This package implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).

Total results: 1