_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-tspredit 1.2.727
Propagated dependencies: r-wavelets@0.3-0.2 r-randomforest@4.7-1.2 r-nnet@7.3-20 r-mfilter@0.1-5 r-kfas@1.6.0 r-hht@2.1.6 r-forecast@8.24.0 r-fnn@1.1.4.1 r-elmnnrcpp@1.0.4 r-e1071@1.7-16 r-dplyr@1.1.4 r-desctools@0.99.60 r-daltoolbox@1.2.727
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cefet-rj-dal.github.io/tspredit/
Licenses: Expat
Synopsis: Time Series Prediction with Integrated Tuning
Description:

Time series prediction is a critical task in data analysis, requiring not only the selection of appropriate models, but also suitable data preprocessing and tuning strategies. TSPredIT (Time Series Prediction with Integrated Tuning) is a framework that provides a seamless integration of data preprocessing, decomposition, model training, hyperparameter optimization, and evaluation. Unlike other frameworks, TSPredIT emphasizes the co-optimization of both preprocessing and modeling steps, improving predictive performance. It supports a variety of statistical and machine learning models, filtering techniques, outlier detection, data augmentation, and ensemble strategies. More information is available in Salles et al. <doi:10.1007/978-3-662-68014-8_2>.

Total results: 1