_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-vglmer 1.0.6
Propagated dependencies: r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-mvtnorm@1.3-2 r-mgcv@1.9-1 r-matrix@1.7-1 r-lmtest@0.9-40 r-lme4@1.1-35.5 r-cholwishart@1.1.4
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/mgoplerud/vglmer
Licenses: GPL 2+
Synopsis: Variational Inference for Hierarchical Generalized Linear Models
Description:

Estimates hierarchical models using variational inference. At present, it can estimate logistic, linear, and negative binomial models. It can accommodate models with an arbitrary number of random effects and requires no integration to estimate. It also provides the ability to improve the quality of the approximation using marginal augmentation. Goplerud (2022) <doi:10.1214/21-BA1266> and Goplerud (2024) <doi:10.1017/S0003055423000035> provide details on the variational algorithms.

Total results: 1