_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-vip 0.4.1
Propagated dependencies: r-yardstick@1.3.1 r-tibble@3.2.1 r-ggplot2@3.5.1 r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/koalaverse/vip/
Licenses: GPL 2+
Synopsis: Variable Importance Plots
Description:

This package provides a general framework for constructing variable importance plots from various types of machine learning models in R. Aside from some standard model- specific variable importance measures, this package also provides model- agnostic approaches that can be applied to any supervised learning algorithm. These include 1) an efficient permutation-based variable importance measure, 2) variable importance based on Shapley values (Strumbelj and Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>, and 3) the variance-based approach described in Greenwell et al. (2018) <arXiv:1805.04755>. A variance-based method for quantifying the relative strength of interaction effects is also included (see the previous reference for details).

Total results: 4