_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-vtreat 1.6.5
Propagated dependencies: r-wrapr@2.1.0 r-digest@0.6.37
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/WinVector/vtreat/
Licenses: GPL 2 GPL 3
Synopsis: Statistically Sound 'data.frame' Processor/Conditioner
Description:

This package provides a data.frame processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. vtreat prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems vtreat defends against: Inf', NA', too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Reference: "'vtreat': a data.frame Processor for Predictive Modeling", Zumel, Mount, 2016, <DOI:10.5281/zenodo.1173313>.

Total results: 1