Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tools to clean and process text. Tools are geared at checking for substrings that are not optimal for analysis and replacing or removing them (normalizing) with more analysis friendly substrings (see Sproat, Black, Chen, Kumar, Ostendorf, & Richards (2001) doi:10.1006/csla.2001.0169) or extracting them into new variables. For example, emoticons are often used in text but not always easily handled by analysis algorithms. The replace_emoticon() function replaces emoticons with word equivalents.
Lambert W x F distributions are a generalized framework to analyze skewed, heavy-tailed data. It is based on an input/output system, where the output random variable (RV) Y is a non-linearly transformed version of an input RV X ~ F with similar properties as X, but slightly skewed (heavy-tailed). The transformed RV Y has a Lambert W x F distribution. This package contains functions to model and analyze skewed, heavy-tailed data the Lambert Way: simulate random samples, estimate parameters, compute quantiles, and plot/ print results nicely. The most useful function is Gaussianize, which works similarly to scale, but actually makes the data Gaussian. A do-it-yourself toolkit allows users to define their own Lambert W x MyFavoriteDistribution and use it in their analysis right away.
This package provides tooling to group dates by a variety of periods including: yearly, monthly, by second, by week of the month, and more. The groups are defined in such a way that they also represent the distance between dates in terms of the period. This extracts valuable information that can be used in further calculations that rely on a specific temporal spacing between observations.
This package provides grid grobs that fill in a user-defined area with various patterns. It includes enhanced versions of the geometric and image-based patterns originally contained in the ggpattern package as well as original pch, polygon_tiling, regular_polygon, rose, text, wave, and weave patterns plus support for custom user-defined patterns.
This package provides a toolset for functional enrichment analysis and visualization, gene/protein/SNP identifier conversion and mapping orthologous genes across species via g:Profiler. The main tools are:
g:GOSt, functional enrichment analysis and visualization of gene lists;g:Convert, gene/protein/transcript identifier conversion across various namespaces;g:Orth, orthology search across species;g:SNPense, mapping SNP rs identifiers to chromosome positions, genes and variant effects.
This package is an R interface corresponding to the 2019 update of g:Profiler and provides access to versions e94_eg41_p11 and higher.
This package provides tools to estimate parameters of accumulated damage (load duration) models based on failure time data under a Bayesian framework, using Approximate Bayesian Computation (ABC), and to assess long-term reliability under stochastic load profiles.
This package fits multivariate generalized linear mixed models and related models. This is done using Markov chain Monte Carlo techniques.
This package provides p-values in type I, II or III anova and summary tables for lmer model fits via Satterthwaite's degrees of freedom method. A Kenward-Roger method is also available via the pbkrtest package. Model selection methods include step, drop1 and anova-like tables for random effects (ranova). Methods for Least-Square means (LS-means) and tests of linear contrasts of fixed effects are also available.
This package provides utilities for processing and analyzing the files that are exported from a recorded Zoom meeting. This includes analyzing data captured through video cameras and microphones, the text-based chat, and meta-data. You can analyze aspects of the conversation among meeting participants and their emotional expressions throughout the meeting.
This package provides fast and efficient routines for common rolling / windowed operations. Routines for the efficient computation of windowed mean, median, sum, product, minimum, maximum, standard deviation and variance are provided.
This package provides a custom CSS/HTML or GIF/image file for the loading screen in R Shiny. It also can use the marquee to have a custom text loading screen.
This package provides functions for converting, importing, and drawing PostScript pictures in R plots.
This package provides an implementation of the FastICA algorithm to perform independent component analysis (ICA) and projection pursuit.
This package implements parametric and non-parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010) <DOI:10.1214/10-STS321>, Imai, Keele and Tingley (2010) <DOI:10.1037/a0020761>, Imai, Tingley and Yamamoto (2013) <DOI:10.1111/j.1467-985X.2012.01032.x>, Imai and Yamamoto (2013) <DOI:10.1093/pan/mps040> and Yamamoto (2013). In addition to the estimation of causal mediation effects, the software also allows researchers to conduct sensitivity analysis for certain parametric models.
This package provides a collection of HTML, JavaScript, and CSS assets that dynamically generate beautiful documentation from a Swagger compliant API.
This package provides tools and functions for parsing, rendering and operating on semantic version strings. Semantic versioning is a simple set of rules and requirements that dictate how version numbers are assigned and incremented as outlined at http://semver.org.
This package implements various measures of information theory based on several entropy estimators.
This package provides a set of tools to facilitate package development and make R a more user-friendly place. It is intended mostly for developers (or anyone who writes/shares functions). It provides a simple, powerful and flexible way to check the arguments passed to functions. The developer can easily describe the type of argument needed. If the user provides a wrong argument, then an informative error message is prompted with the requested type and the problem clearly stated--saving the user a lot of time in debugging.
This package provides functionality for random generation of spatial data in the spatstat family of packages. It generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes (simple sequential inhibition, Matern inhibition models, Matern cluster process, Neyman-Scott cluster processes, log-Gaussian Cox processes, product shot noise cluster processes) and simulation of Gibbs point processes (Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler).
This package provides a toolset for Geometric Morphometrics and mesh processing. This includes (among other stuff) mesh deformations based on reference points, permutation tests, detection of outliers, processing of sliding semi-landmarks and semi-automated surface landmark placement.
This package provides utilities for working with Google APIs. This includes functions and classes for handling common credential types and for preparing, executing, and processing HTTP requests.
This package contains various tools for working with and evaluating cross-validated area under the ROC curve (AUC) estimators. The primary functions of the package are ci.cvAUC and ci.pooled.cvAUC, which report cross-validated AUC and compute confidence intervals for cross-validated AUC estimates based on influence curves for i.i.d. and pooled repeated measures data, respectively.
This package contains various routines for drawing ellipses and ellipse-like confidence regions, implementing the plots described in Murdoch and Chow (1996), A graphical display of large correlation matrices, The American Statistician 50, 178-180. There are also routines implementing the profile plots described in Bates and Watts (1988), Nonlinear Regression Analysis and its Applications.
Recursive partitioning based on psychometric models, employing the general MOB algorithm (from package partykit) to obtain Bradley-Terry trees, Rasch trees, rating scale and partial credit trees, and MPT trees, trees for 1PL, 2PL, 3PL and 4PL models and generalized partial credit models.