Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality to benchmark your CPU and compare against other CPUs. Also provides functions for obtaining system specifications, such as RAM, CPU type, and R version.
This package provides a minimal R and C++ API for parsing well-known binary and well-known text representation of geometries to and from R-native formats. Well-known binary is compact and fast to parse; well-known text is human-readable and is useful for writing tests. These formats are only useful in R if the information they contain can be accessed in R, for which high-performance functions are provided here.
This package provides a set of handy functions. It includes a versatile one line progress bar, one line function timer with detailed output, time delay function, text histogram, object preview, CRAN package search, simpler package installer, Linux command install check, a flexible Mode function, top function, simulation of correlated data, and more.
Circle Manhattan Plot is an R package that can lay out genome-wide association study P-value results in both traditional rectangular patterns, QQ-plot and novel circular ones. United in only one bull's eye style plot, association results from multiple traits can be compared interactively, thereby to reveal both similarities and differences between signals. Additional functions include: highlight signals, a group of SNPs, chromosome visualization and candidate genes around SNPs.
This is a collection of econometric functions for performance and risk analysis. This package aims to aid practitioners and researchers in utilizing the latest research in analysis of non-normal return streams. In general, it is most tested on return (rather than price) data on a regular scale, but most functions will work with irregular return data as well, and increasing numbers of functions will work with P&L or price data where possible.
This package provides functions for reading, writing, plotting, analysing, and manipulating allelic and haplotypic data, including from VCF files, and for the analysis of population nucleotide sequences and micro-satellites including coalescent analyses, linkage disequilibrium, population structure (Fst, Amova) and equilibrium (HWE), haplotype networks, minimum spanning tree and network, and median-joining networks.
R-coop offers implementations of covariance, correlation and cosine similarity. The implementations are fast and memory-efficient and their use is resolved automatically based on the input data, handled by R's S3 methods. Full descriptions of the algorithms and benchmarks are available in the package vignettes.
This package provides functions that wrap popular phylogenetic software for sequence alignment, masking of sequence alignments, and estimation of phylogenies and ancestral character states.
Writing interfaces to command line software is cumbersome. The cmdfun package provides a framework for building function calls to seamlessly interface with shell commands by allowing lazy evaluation of command line arguments. It also provides methods for handling user-specific paths to tool installs or secrets like API keys. Its focus is to equally serve package builders who wish to wrap command line software, and to help analysts stay inside R when they might usually leave to execute non-R software.
This package is for genomic regions processing using command line tools such as BEDTools, BEDOPS and Tabix. These tools offer scalable and efficient utilities to perform genome arithmetic e.g indexing, formatting and merging. The bedr package's API enhances access to these tools as well as offers additional utilities for genomic regions processing.
This package provides airline on-time data for all flights departing NYC in 2013. It also includes useful metadata on airlines, airports, weather, and planes.
This package provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to:
Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions.
Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws.
Provide various summaries of draws in convenient formats.
Provide lightweight implementations of state of the art posterior inference diagnostics.
This package lets you use syntax inspired by the package glue to extract matched substrings in a more intuitive and compact way than by using standard regular expressions.
This package generates ROC plots. Most ROC curve plots obscure the cutoff values and inhibit interpretation and comparison of multiple curves. This attempts to address those shortcomings by providing plotting and interactive tools. Functions are provided to generate an interactive ROC curve plot for web use, and print versions. A Shiny application implementing the functions is also included.
This package provides routines for the polynomial spline fitting routines hazard regression, hazard estimation with flexible tails, logspline, lspec, polyclass, and polymars.
This package lets you read and write JSON Web Keys (JWK, rfc7517), generate and verify JSON Web Signatures (JWS, rfc7515) and encode/decode JSON Web Tokens (JWT, rfc7519). These standards provide modern signing and encryption formats that are natively supported by browsers via the JavaScript WebCryptoAPI, and used by services like OAuth 2.0, LetsEncrypt, and Github Apps.
This package lets you expand factors, characters and other eligible classes into dummy/indicator variables.
This package contains a number of comparative "phylogenetic" methods, mostly focusing on analysing diversification and character evolution. Contains implementations of "BiSSE" (Binary State Speciation and Extinction) and its unresolved tree extensions, "MuSSE" (Multiple State Speciation and Extinction), "QuaSSE", "GeoSSE", and "BiSSE-ness" Other included methods include Markov models of discrete and continuous trait evolution and constant rate speciation and extinction.
This package provides functionality to assert conditions that have to be met so that errors in data used in analysis pipelines can fail quickly. It is similar to stopifnot() but more powerful, friendly, and easier for use in pipelines.
Sankey plots are a type of diagram that is convenient to illustrate how flow of information, resources etc. separates and joins, much like observing how rivers split and merge. For example, they can be used to compare different clusterings. This package provides an implementation of Sankey plots for R.
Pdist computes the euclidean distance between rows of a matrix X and rows of another matrix Y. Previously, this could be done by binding the two matrices together and calling dist, but this creates unnecessary computation by computing the distances between a row of X and another row of X, and likewise for Y. Pdist strictly computes distances across the two matrices, not within the same matrix, making computations significantly faster for certain use cases.
This package provides features to build gradient color maps.
This package provides a wrapper around the Parsing Expression Grammar Template Library, a C++11 library for generating parsing expression grammars, that makes it accessible within Rcpp. With this, developers can implement their own grammars and easily expose them in R packages.
This package provides iterative methods for matrix completion that use nuclear-norm regularization. The package includes procedures for centering and scaling rows, columns or both, and for computing low-rank single value decompositions (SVDs) on large sparse centered matrices (i.e. principal components).