Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
CMAP/LINCS hdf5 databases and other annotations used for signatureSearch software package.
Statistics implemented for both peak-wise and gene-wise associations. In peak-wise associations, the p-value of the target genes of a given set of peaks are calculated. Negative binomial or Poisson distributions can be used for modeling the unweighted peaks targets and log-nromal can be used to model the weighted peaks. In gene-wise associations a table consisting of a set of genes, mapped to specific peaks, is generated using the given rules.
scBubbletree is a quantitative method for the visual exploration of scRNA-seq data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree is user-friendly and integrates seamlessly with popular scRNA-seq analysis tools, facilitating comprehensive and intuitive data interpretation.
Suffix Array Kernel Smoothing (see https://academic.oup.com/bioinformatics/article-abstract/35/20/3944/5418797), or SArKS, identifies sequence motifs whose presence correlates with numeric scores (such as differential expression statistics) assigned to the sequences (such as gene promoters). SArKS smooths over sequence similarity, quantified by location within a suffix array based on the full set of input sequences. A second round of smoothing over spatial proximity within sequences reveals multi-motif domains. Discovered motifs can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing.
Inference and detection of switch-like differential expression across single-cell RNA-seq trajectories.
The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.
Example spatial transcriptomics datasets with Simple Feature annotations as SpatialFeatureExperiment objects. Technologies include Visium, slide-seq, Nanostring CoxMX, Vizgen MERFISH, and 10X Xenium. Tissues include mouse skeletal muscle, human melanoma metastasis, human lung, breast cancer, and mouse liver.
SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.
scTHI is an R package to identify active pairs of ligand-receptors from single cells in order to study,among others, tumor-host interactions. scTHI contains a set of signatures to classify cells from the tumor microenvironment.
sRACIPE implements a randomization-based method for gene circuit modeling. It allows us to study the effect of both the gene expression noise and the parametric variation on any gene regulatory circuit (GRC) using only its topology, and simulates an ensemble of models with random kinetic parameters at multiple noise levels. Statistical analysis of the generated gene expressions reveals the basin of attraction and stability of various phenotypic states and their changes associated with intrinsic and extrinsic noises. sRACIPE provides a holistic picture to evaluate the effects of both the stochastic nature of cellular processes and the parametric variation.
By leveraging statistical properties (log-rank test for survival) of patient cohorts defined by binary thresholds, poor-prognosis patients are identified by the sigsquared package via optimization over a cost function reducing type I and II error.
The package contains BioGRID interactions for arabidopsis(thale cress), c.elegans, fruit fly, human, mouse, yeast( budding yeast ) and S.pombe (fission yeast) . Entrez ids, official names and unique ids can be used to find proteins. The format of interactions are lists. For each gene/protein, there is an entry in the list with "name" containing name of the gene/protein and "interactors" containing the list of genes/proteins interacting with it.
Single cell multiome data, containing chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) information analyzed with the ArchR package and presented as MultiAssayExperiment objects.
Defines a S4 class that is based on SingleCellExperiment. In addition to the usual gene layer the object can also store data for immune genes such as HLAs, Igs and KIRs at allele and functional level. The package is part of a workflow named single-cell ImmunoGenomic Diversity (scIGD), that firstly incorporates allele-aware quantification data for immune genes. This new data can then be used with the here implemented data structure and functionalities for further data handling and data analysis.
This package aims to quantify and remove putative double strand DNA from a strand-specific RNA sample. There are also options and methods to plot the positive/negative proportions of all sliding windows, which allow users to have an idea of how much the sample was contaminated and the appropriate threshold to be used for filtering.
Comprehensive R package for differential composition and variability analysis in single-cell RNA sequencing, CyTOF, and microbiome data. Provides robust Bayesian modeling with outlier detection, random effects, and advanced statistical methods for cell type proportion analysis. Features include probabilistic outlier identification, mixed-effect modeling, differential variability testing, and comprehensive visualization tools. Perfect for cancer research, immunology, developmental biology, and single-cell genomics applications.
scTGIF connects the cells and the related gene functions without cell type label.
High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression.
Supporting data for the seq2patheway package. Includes modified gene sets from MsigDB and org.Hs.eg.db; gene locus definitions from GENCODE project.
SuperCellCyto provides the ability to summarise cytometry data into supercells by merging together cells that are similar in their marker expressions using the SuperCell package.
Seahtrue organizes oxygen consumption and extracellular acidification analysis data from experiments performed on an XF analyzer into structured nested tibbles.This allows for detailed processing of raw data and advanced data visualization and statistics. Seahtrue introduces an open and reproducible way to analyze these XF experiments. It uses file paths to .xlsx files. These .xlsx files are supplied by the userand are generated by the user in the Wave software from Agilent from the assay result files (.asyr). The .xlsx file contains different sheets of important data for the experiment; 1. Assay Information - Details about how the experiment was set up. 2. Rate Data - Information about the OCR and ECAR rates. 3. Raw Data - The original raw data collected during the experiment. 4. Calibration Data - Data related to calibrating the instrument. Seahtrue focuses on getting the specific data needed for analysis. Once this data is extracted, it is prepared for calculations through preprocessing. To make sure everything is accurate, both the initial data and the preprocessed data go through thorough checks.
We present a novel statistical framework for identifying differential distributions in single-cell RNA-sequencing (scRNA-seq) data between treatment conditions by modeling gene expression read counts using generalized linear models (GLMs). We model each gene independently under each treatment condition using error distributions Poisson (P), Negative Binomial (NB), Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) with log link function and model based normalization for differences in sequencing depth. Since all four distributions considered in our framework belong to the same family of distributions, we first perform a Kolmogorov-Smirnov (KS) test to select genes belonging to the family of ZINB distributions. Genes passing the KS test will be then modeled using GLMs. Model selection is done by calculating the Bayesian Information Criterion (BIC) and likelihood ratio test (LRT) statistic.
This package provides a scale based normalization (SCBN) method to identify genes with differential expression between different species. It takes into account the available knowledge of conserved orthologous genes and the hypothesis testing framework to detect differentially expressed orthologous genes. The method on this package are described in the article A statistical normalization method and differential expression analysis for RNA-seq data between different species by Yan Zhou, Jiadi Zhu, Tiejun Tong, Junhui Wang, Bingqing Lin, Jun Zhang (2018, pending publication).
Using site polymorphism is one of the ways to cluster DNA/protein sequences but it is possible for the sequences with the same polymorphism on a single site to be genetically distant. This package is aimed at clustering sequences using site polymorphism and their corresponding phylogenetic trees. By considering their location on the tree, only the structurally adjacent sequences will be clustered. However, the adjacent sequences may not necessarily have the same polymorphism. So a branch-and-bound like algorithm is used to minimize the entropy representing the purity of site polymorphism of each cluster.