Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Leverage the existing open access TCGA data on Terra with well-established Bioconductor infrastructure. Make use of the Terra data model without learning its complexities. With a few functions, you can copy / download and generate a MultiAssayExperiment from the TCGA example workspaces provided by Terra.
RNA abundance and cell size parameters could improve RNA-seq deconvolution algorithms to more accurately estimate cell type proportions given the different cell type transcription activity levels. A Total RNA Expression Gene (TREG) can facilitate estimating total RNA content using single molecule fluorescent in situ hybridization (smFISH). We developed a data-driven approach using a measure of expression invariance to find candidate TREGs in postmortem human brain single nucleus RNA-seq. This R package implements the method for identifying candidate TREGs from snRNA-seq data.
The package provides ready to use epigenomes (obtained from TWGBS) and transcriptomes (RNA-seq) from various tissues as obtained in the study (Delacher and Imbusch 2017, PMID: 28783152). Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. The underlying dataset characterises the epigenetic and transcriptomic modifications for specialized tissue Treg cells.
traseR performs GWAS trait-associated SNP enrichment analyses in genomic intervals using different hypothesis testing approaches, also provides various functionalities to explore and visualize the results.
This package provides a package containing an environment represeting the newcdf/tinesATH1.cdf.cdf file.
The topdownr package allows automatic and systemic investigation of fragment conditions. It creates Thermo Orbitrap Fusion Lumos method files to test hundreds of fragmentation conditions. Additionally it provides functions to analyse and process the generated MS data and determine the best conditions to maximise overall fragment coverage.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
The tigre package implements our methodology of Gaussian process differential equation models for analysis of gene expression time series from single input motif networks. The package can be used for inferring unobserved transcription factor (TF) protein concentrations from expression measurements of known target genes, or for ranking candidate targets of a TF.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
In a typical microarray setting with gene expression data observed under two conditions, the local false discovery rate describes the probability that a gene is not differentially expressed between the two conditions given its corrresponding observed score or p-value level. The resulting curve of p-values versus local false discovery rate offers an insight into the twilight zone between clear differential and clear non-differential gene expression. Package twilight contains two main functions: Function twilight.pval performs a two-condition test on differences in means for a given input matrix or expression set and computes permutation based p-values. Function twilight performs a stochastic downhill search to estimate local false discovery rates and effect size distributions. The package further provides means to filter for permutations that describe the null distribution correctly. Using filtered permutations, the influence of hidden confounders could be diminished.
Rank results by confident effect sizes, while maintaining False Discovery Rate and False Coverage-statement Rate control. Topconfects is an alternative presentation of TREAT results with improved usability, eliminating p-values and instead providing confidence bounds. The main application is differential gene expression analysis, providing genes ranked in order of confident log2 fold change, but it can be applied to any collection of effect sizes with associated standard errors.
This experimental data package contains 11 data sets necessary to follow the "TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages".
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Testing SNPs and SNP interactions with a genotypic TDT. This package furthermore contains functions for computing pairwise values of LD measures and for identifying LD blocks, as well as functions for setting up matched case pseudo-control genotype data for case-parent trios in order to run trio logic regression, for imputing missing genotypes in trios, for simulating case-parent trios with disease risk dependent on SNP interaction, and for power and sample size calculation in trio data.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
The twoddpcr package takes Droplet Digital PCR (ddPCR) droplet amplitude data from Bio-Rad's QuantaSoft and can classify the droplets. A summary of the positive/negative droplet counts can be generated, which can then be used to estimate the number of molecules using the Poisson distribution. This is the first open source package that facilitates the automatic classification of general two channel ddPCR data. Previous work includes definetherain (Jones et al., 2014) and ddpcRquant (Trypsteen et al., 2015) which both handle one channel ddPCR experiments only. The ddpcr package available on CRAN (Attali et al., 2016) supports automatic gating of a specific class of two channel ddPCR experiments only.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
ExperimentHub package containing datasets for use in the TENET package's vignette and function examples. These include a variety of different objects to illustrate different datasets used in TENET functions. Where applicable, all datasets are aligned to the hg38 human genome.
This package provides functions for identification and visualization of potential intramolecular triplex patterns in DNA sequence. The main functionality is to detect the positions of subsequences capable of folding into an intramolecular triplex (H-DNA) in a much larger sequence. The potential H-DNA (triplexes) should be made of as many cannonical nucleotide triplets as possible. The package includes visualization showing the exact base-pairing in 1D, 2D or 3D.
treekoR is a novel framework that aims to utilise the hierarchical nature of single cell cytometry data to find robust and interpretable associations between cell subsets and patient clinical end points. These associations are aimed to recapitulate the nested proportions prevalent in workflows inovlving manual gating, which are often overlooked in workflows using automatic clustering to identify cell populations. We developed treekoR to: Derive a hierarchical tree structure of cell clusters; quantify a cell types as a proportion relative to all cells in a sample (%total), and, as the proportion relative to a parent population (%parent); perform significance testing using the calculated proportions; and provide an interactive html visualisation to help highlight key results.
This package is devoted to analyzing MeRIP-seq data. Current functionalities include 1. detect transcriptome wide m6A methylation regions 2. detect transcriptome wide differential m6A methylation regions.
Exposes an annotation databases generated from BioMart by exposing these as TxDb objects.
TTMap is a clustering method that groups together samples with the same deviation in comparison to a control group. It is specially useful when the data is small. It is parameter free.
The TMSig package contains tools to prepare, analyze, and visualize named lists of sets, with an emphasis on molecular signatures (such as gene or kinase sets). It includes fast, memory efficient functions to construct sparse incidence and similarity matrices and filter, cluster, invert, and decompose sets. Additionally, bubble heatmaps can be created to visualize the results of any differential or molecular signatures analysis.