Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for differential abundance analysis in high-dimensional cytometry data when a covariate is subject to right censoring (e.g. survival time) based on multiple imputation and generalized linear mixed models.
clustSIGNAL: clustering of Spatially Informed Gene expression with Neighbourhood Adapted Learning. A tool for adaptively smoothing and clustering gene expression data. clustSIGNAL uses entropy to measure heterogeneity of cell neighbourhoods and performs a weighted, adaptive smoothing, where homogeneous neighbourhoods are smoothed more and heterogeneous neighbourhoods are smoothed less. This not only overcomes data sparsity but also incorporates spatial context into the gene expression data. The resulting smoothed gene expression data is used for clustering and could be used for other downstream analyses.
ChIP-Enrich and Poly-Enrich perform gene set enrichment testing using peaks called from a ChIP-seq experiment. The method empirically corrects for confounding factors such as the length of genes, and the mappability of the sequence surrounding genes.
Annotation files of the formatted genomic annotation for ChromHMM. Three types of text files are included the chromosome sizes, region coordinates and anchors specifying the transcription start and end sites. The package includes data for two versions of the genome of humans and mice.
Methodology for supervised clustering of potentially many predictor variables, such as genes etc., in time series datasets Provides functions that help the user assigning genes to predefined set of model profiles.
Clonal cell groups share common mutations within cancer, precancer, and even clinically normal appearing tissues. The frequency and location of these mutations may predict prognosis and cancer risk. It has also been well established that certain genomic regions have increased sensitivity to acquiring mutations. Mutation-sensitive genomic regions may therefore serve as markers for predicting cancer risk. This package contains multiple functions to establish significantly mutated hotspots, compare hotspot mutation burden between samples, and perform exploratory data analysis of the correlation between hotspot mutation burden and personal risk factors for cancer, such as age, gender, and history of carcinogen exposure. This package allows users to identify robust genomic markers to help establish cancer risk.
This package provides a package containing an environment representing the Canine.cdf file.
This package facilitates reading, preprocessing and manipulating Codelink microarray data. The raw data must be exported as text file using the Codelink software.
This package provides a package containing an environment representing the Chicken.cdf file.
Affymetrix Affymetrix Chicken Array annotation data (chip chicken) assembled using data from public repositories.
Affymetrix clariomshumanht annotation data (chip clariomshumanhttranscriptcluster) assembled using data from public repositories.
This package integrates literature-constrained and data-driven methods to infer signalling networks from perturbation experiments. It permits to extends a given network with links derived from the data via various inference methods and uses information on physical interactions of proteins to guide and validate the integration of links.
clevRvis provides a set of visualization techniques for clonal evolution. These include shark plots, dolphin plots and plaice plots. Algorithms for time point interpolation as well as therapy effect estimation are provided. Phylogeny-aware color coding is implemented. A shiny-app for generating plots interactively is additionally provided.
The cBioPortalData R package accesses study datasets from the cBio Cancer Genomics Portal. It accesses the data either from the pre-packaged zip / tar files or from the API interface that was recently implemented by the cBioPortal Data Team. The package can provide data in either tabular format or with MultiAssayExperiment object that uses familiar Bioconductor data representations.
This package infers cell type-specific expression based on co-expression similarity with known cell type marker genes. Can make accurate predictions using publicly available expression data, even when a cell type has not been isolated before.
This package contains infrastructure for benchmarking analysis methods and access to single cell mixture benchmarking data. It provides a framework for organising analysis methods and testing combinations of methods in a pipeline without explicitly laying out each combination. It also provides utilities for sampling and filtering SingleCellExperiment objects, constructing lists of functions with varying parameters, and multithreaded evaluation of analysis methods.
CAGE is a widely used high throughput assay for measuring transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor package for performing a wide range of common data analysis tasks for CAGE and 5'-end data in general. Core functionality includes: import of CAGE TSSs (CTSSs), tag (or unidirectional) clustering for TSS identification, bidirectional clustering for enhancer identification, annotation with transcript and gene models, correlation of TSS and enhancer expression, calculation of TSS shapes, quantification of CAGE expression as expression matrices and genome brower visualization.
This package serves as a query interface for important community collections of small molecules, while also allowing users to include custom compound collections.
CYPRESS is a cell-type-specific power tool. This package aims to perform power analysis for the cell-type-specific data. It calculates FDR, FDC, and power, under various study design parameters, including but not limited to sample size, and effect size. It takes the input of a SummarizeExperimental(SE) object with observed mixture data (feature by sample matrix), and the cell-type mixture proportions (sample by cell-type matrix). It can solve the cell-type mixture proportions from the reference free panel from TOAST and conduct tests to identify cell-type-specific differential expression (csDE) genes.
RNA-seq data generated by some library preparation methods, such as rRNA-depletion-based method and the SMART-seq method, might be contaminated by genomic DNA (gDNA), if DNase I disgestion is not performed properly during RNA preparation. CleanUpRNAseq is developed to check if RNA-seq data is suffered from gDNA contamination. If so, it can perform correction for gDNA contamination and reduce false discovery rate of differentially expressed genes.
Annotation of peaklists generated by xcms, rule based annotation of isotopes and adducts, isotope validation, EIC correlation based tagging of unknown adducts and fragments.
This package provides genomic location, nearby CpG island and nearby gene information for common Illumina methylation array platforms.
Calculates significant annotations (categories) in each of two (or more) feature (i.e. gene) lists, determines the overlap between the annotations, and returns graphical and tabular data about the significant annotations and which combinations of feature lists the annotations were found to be significant. Interactive exploration is facilitated through the use of RCytoscape (heavily suggested).
This package provides support for automation and visualization of flow cytometry data analysis pipelines. In the current state, the package focuses on the preprocessing and quality control part. The framework is based on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep. The pipeline steps are linked to corresponding R functions - that are either provided in the CytoPipeline package itself, or exported from a third party package, or coded by the user her/himself. The processing steps need to be specified centrally and explicitly using either a json input file or through step by step creation of a CytoPipeline object with dedicated methods. After having run the pipeline, obtained results at all steps can be retrieved and visualized thanks to file caching (the running facility uses a BiocFileCache implementation). The package provides also specific visualization tools like pipeline workflow summary display, and 1D/2D comparison plots of obtained flowFrames at various steps of the pipeline.