Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Raw data objects to be used for umbilical cord blood cell proportion estimation in minfi and similar packages. The FlowSorted.CordBloodCombined.450k object is based in samples assayed by Bakulski et al, Gervin et al., de Goede et al., and Lin et al.
Framework providing basic pedigree analysis and plotting utilities as well as a variety of methods to evaluate familial aggregation of traits in large pedigrees.
Perform fast functional enrichment on feature lists (like genes or proteins) using the hypergeometric distribution. Tailored for speed, this package is ideal for interactive platforms such as Shiny. It supports the retrieval of functional data from sources like GO, KEGG, Reactome, Bioplanet and WikiPathways. By downloading and preparing data first, it allows for rapid successive tests on various feature selections without the need for repetitive, time-consuming preparatory steps typical of other packages.
This package contains two main functions. The first is fdr.ma which takes normalized expression data array, experimental design and computes adjusted p-values It returns the fdr adjusted p-values and plots, according to the methods described in (Reiner, Yekutieli and Benjamini 2002). The second, is fdr.gui() which creates a simple graphic user interface to access fdr.ma.
Raw data objects to be used for cord blood cell proportion estimation in minfi.
Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data analysis. An important step in cell clustering is to select a subset of genes (referred to as “features”), whose expression patterns will then be used for downstream clustering. A good set of features should include the ones that distinguish different cell types, and the quality of such set could have significant impact on the clustering accuracy. FEAST is an R library for selecting most representative features before performing the core of scRNA-seq clustering. It can be used as a plug-in for the etablished clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps: 1. consensus clustering; 2. gene-level significance inference; 3. validation of an optimized feature set.
The funOmics package ggregates or summarizes omics data into higher level functional representations such as GO terms gene sets or KEGG metabolic pathways. The aggregated data matrix represents functional activity scores that facilitate the analysis of functional molecular sets while allowing to reduce dimensionality and provide easier and faster biological interpretations. Coordinated functional activity scores can be as informative as single molecules!
FISHalyseR provides functionality to process and analyse digital cell culture images, in particular to quantify FISH probes within nuclei. Furthermore, it extract the spatial location of each nucleus as well as each probe enabling spatial co-localisation analysis.
Data files used by the examples in frma and frmaTools packages.
Feature rankings can be distorted by a single case in the context of high-dimensional data. The cases exerts abnormal influence on feature rankings are called influential points (IPs). The package aims at detecting IPs based on case deletion and quantifies their effects by measuring the rank changes (DOI:10.48550/arXiv.2303.10516). The package applies a novel rank comparing measure using the adaptive weights that stress the top-ranked important features and adjust the weights to ranking properties.
Determine sample ploidy via flow cytometry histogram analysis. Reads Flow Cytometry Standard (FCS) files via the flowCore bioconductor package, and provides functions for determining the DNA ploidy of samples based on internal standards.
Processed RNA-seq data for 1,139 human primary colorectal tissue samples across three phenotypes, including tumor, normal adjacent-to-tumor, and healthy, available as Synapse ID syn22237139 on synapse.org. Data have been parsed into SummarizedExperiment objects available via ExperimentHub to facilitate reproducibility and extension of results from Dampier et al. (PMCID: PMC7386360, PMID: 32764205).
Graphical displays with embedded statistical tests for gated ICS flow cytometry data, and a data class which stores "stacked" data and has methods for computing summary measures on stacked data, such as marginal and polyfunctional degree data.
This package provides a RangedSummarizedExperiment object of read counts in genes for a time course RNA-Seq experiment of fission yeast (Schizosaccharomyces pombe) in response to oxidative stress (1M sorbitol treatment) at 0, 15, 30, 60, 120 and 180 mins. The samples are further divided between a wild-type group and a group with deletion of atf21. The read count matrix was prepared and provided by the author of the study: Leong HS, Dawson K, Wirth C, Li Y, Connolly Y, Smith DL, Wilkinson CR, Miller CJ. "A global non-coding RNA system modulates fission yeast protein levels in response to stress". Nat Commun 2014 May 23;5:3947. PMID: 24853205. GEO: GSE56761.
This package provides tools for automated sequential gating analogous to the manual gating strategy based on the density of the data.
Profile maximum likelihood estimation of parameters for flow cytometry data transformations.
CAGE (Cap Analysis Gene Expression) data from FANTOM3 and FANTOM4 projects produced by RIKEN Omics Science Center.
flowcatchR is a set of tools to analyze in vivo microscopy imaging data, focused on tracking flowing blood cells. It guides the steps from segmentation to calculation of features, filtering out particles not of interest, providing also a set of utilities to help checking the quality of the performed operations (e.g. how good the segmentation was). It allows investigating the issue of tracking flowing cells such as in blood vessels, to categorize the particles in flowing, rolling and adherent. This classification is applied in the study of phenomena such as hemostasis and study of thrombosis development. Moreover, flowcatchR presents an integrated workflow solution, based on the integration with a Shiny App and Jupyter notebooks, which is delivered alongside the package, and can enable fully reproducible bioimage analysis in the R environment.
This package reproduces the systems biology analysis for the data in package Fletcher2013a using RTN.
fourDNData is a data package giving programmatic access to Hi-C contact matrices uniformly processed by the [4DN consortium](https://www.4dnucleome.org/). The matrices are available in the multi-resolution `.mcool` format.
Calculate distances, build phylogenetic trees or perform hierarchical clustering between the samples of a VCF or FASTA file. Functions are implemented in Java-11 and called via rJava. Parallel implementation that operates directly on the VCF or FASTA file for fast execution.
This package extends flowCore to provide functionality specific to bead data. One of the goals of this package is to automate analysis of bead data for the purpose of normalisation.
Package that implements the FGGA algorithm. This package provides a hierarchical ensemble method based ob factor graphs for the consistent cross-ontology annotation of protein coding genes. FGGA embodies elements of predicate logic, communication theory, supervised learning and inference in graphical models.
This package provides a set of tools for interacting with the Food-Biomarker Ontology (FOBI). A collection of basic manipulation tools for biological significance analysis, graphs, and text mining strategies for annotating nutritional data.