Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Profile maximum likelihood estimation of parameters for flow cytometry data transformations.
This package provides a package to analyze flow cytometric data using gate information to follow population/community dynamics.
This package implements functions to find influential TF and target based on different input type. It have five module: Multi-peak multi-gene annotaion(mmPeakAnno module), Calculate regulation potential(calcRP module), Find influential Target based on ChIP-Seq and RNA-Seq data(Find influential Target module), Find influential TF based on different input(Find influential TF module), Calculate peak-gene or peak-peak correlation(peakGeneCor module). And there are also some other useful function like integrate different source information, calculate jaccard similarity for your TF.
This package provides a fast and automatic clustering to classify the cells into subpopulations based on finding the peaks from the overall density function generated by K-means.
flowcatchR is a set of tools to analyze in vivo microscopy imaging data, focused on tracking flowing blood cells. It guides the steps from segmentation to calculation of features, filtering out particles not of interest, providing also a set of utilities to help checking the quality of the performed operations (e.g. how good the segmentation was). It allows investigating the issue of tracking flowing cells such as in blood vessels, to categorize the particles in flowing, rolling and adherent. This classification is applied in the study of phenomena such as hemostasis and study of thrombosis development. Moreover, flowcatchR presents an integrated workflow solution, based on the integration with a Shiny App and Jupyter notebooks, which is delivered alongside the package, and can enable fully reproducible bioimage analysis in the R environment.
Software to combine flow cytometry data that has been multiplexed into multiple tubes with common markers between them, by establishing common bins across tubes in terms of the common markers, then determining expression within each tube for each bin in terms of the tube-specific markers.
Matching cell populations and building meta-clusters and templates from a collection of FC samples.
Feature rankings can be distorted by a single case in the context of high-dimensional data. The cases exerts abnormal influence on feature rankings are called influential points (IPs). The package aims at detecting IPs based on case deletion and quantifies their effects by measuring the rank changes (DOI:10.48550/arXiv.2303.10516). The package applies a novel rank comparing measure using the adaptive weights that stress the top-ranked important features and adjust the weights to ranking properties.
This package contains two main functions. The first is fdr.ma which takes normalized expression data array, experimental design and computes adjusted p-values It returns the fdr adjusted p-values and plots, according to the methods described in (Reiner, Yekutieli and Benjamini 2002). The second, is fdr.gui() which creates a simple graphic user interface to access fdr.ma.
The funOmics package ggregates or summarizes omics data into higher level functional representations such as GO terms gene sets or KEGG metabolic pathways. The aggregated data matrix represents functional activity scores that facilitate the analysis of functional molecular sets while allowing to reduce dimensionality and provide easier and faster biological interpretations. Coordinated functional activity scores can be as informative as single molecules!
Base annotation databases for fly, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
Processed RNA-seq data for 1,139 human primary colorectal tissue samples across three phenotypes, including tumor, normal adjacent-to-tumor, and healthy, available as Synapse ID syn22237139 on synapse.org. Data have been parsed into SummarizedExperiment objects available via ExperimentHub to facilitate reproducibility and extension of results from Dampier et al. (PMCID: PMC7386360, PMID: 32764205).
Supplying gene expression data sets for the demos of the biclustering method "Factor Analysis for Bicluster Acquisition" (FABIA). The following three data sets are provided: A) breast cancer (van't Veer, Nature, 2002), B) multiple tissues (Su, PNAS, 2002), and C) diffuse large-B-cell lymphoma (Rosenwald, N Engl J Med, 2002).
FANTOM4 promoters, liftOver'ed from hg18 to hg19, CpGs quantified.
Merging of mixture components for model-based automated gating of flow cytometry data using the flowClust framework. Note: users should have a working copy of flowClust 2.0 installed.
Determine sample ploidy via flow cytometry histogram analysis. Reads Flow Cytometry Standard (FCS) files via the flowCore bioconductor package, and provides functions for determining the DNA ploidy of samples based on internal standards.
Exposes an annotation databases generated from UCSC by exposing these as FeatureDb objects.
Famat is made to collect data about lists of genes and metabolites provided by user, and to visualize it through a Shiny app. Information collected is: - Pathways containing some of the user's genes and metabolites (obtained using a pathway enrichment analysis). - Direct interactions between user's elements inside pathways. - Information about elements (their identifiers and descriptions). - Go terms enrichment analysis performed on user's genes. The Shiny app is composed of: - information about genes, metabolites, and direct interactions between them inside pathways. - an heatmap showing which elements from the list are in pathways (pathways are structured in hierarchies). - hierarchies of enriched go terms using Molecular Function and Biological Process.
Data set containing two complete lists of identified functional interaction partners in Human. Data are derived from Reactome and BioGRID databases.
Perform fast functional enrichment on feature lists (like genes or proteins) using the hypergeometric distribution. Tailored for speed, this package is ideal for interactive platforms such as Shiny. It supports the retrieval of functional data from sources like GO, KEGG, Reactome, Bioplanet and WikiPathways. By downloading and preparing data first, it allows for rapid successive tests on various feature selections without the need for repetitive, time-consuming preparatory steps typical of other packages.
Per-channel variance stabilization from a collection of flow cytometry samples by Bertlett test for homogeneity of variances. The approach is applicable to microarrays data as well.
Store UCSC fitCons fitness consequences scores version 1.01 for the human genome (hg19).
flowGate adds an interactive Shiny app to allow manual GUI-based gating of flow cytometry data in R. Using flowGate, you can draw 1D and 2D span/rectangle gates, quadrant gates, and polygon gates on flow cytometry data by interactively drawing the gates on a plot of your data, rather than by specifying gate coordinates. This package is especially geared toward wet-lab cytometerists looking to take advantage of R for cytometry analysis, without necessarily having a lot of R experience.
This package provides a quality control tool for flow cytometry data based on compositional data analysis.