Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Gene set analysis using specific alternative hypotheses. Tests for differential expression, scale and net correlation structure.
This package implements the GaGa model for high-throughput data analysis, including differential expression analysis, supervised gene clustering and classification. Additionally, it performs sequential sample size calculations using the GaGa and LNNGV models (the latter from EBarrays package).
The package offers four network inference statistical models using Dynamic Bayesian Networks and Gibbs Variable Selection: a linear interaction model, two linear interaction models with added experimental noise (Gaussian and Student distributed) for the case where replicates are available and a non-linear interaction model.
This package is a comprehensive visualization tool specifically designed for exploring phylomorphospace. It not only simplifies the process of generating phylomorphospace, but also enhances it with the capability to add graphic layers to the plot with grammar of graphics to create fully annotated phylomorphospaces. It also provide some utilities to help interpret evolutionary patterns.
GeneStructureTools can be used to create in silico alternative splicing events, and analyse potential effects this has on functional gene products.
This package contains a targeted clustering algorithm for the analysis of microarray data. The algorithm can aid in the discovery of new genes with similar functions to a given list of genes already known to have closely related functions.
Spike-in data for GC/MS data and methods within flagme.
GDS files are widely used to represent genotyping or sequence data. The GDSArray package implements the `GDSArray` class to represent nodes in GDS files in a matrix-like representation that allows easy manipulation (e.g., subsetting, mathematical transformation) in _R_. The data remains on disk until needed, so that very large files can be processed.
Produce highly customizable publication quality graphics for genomic data primarily at the cohort level.
Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.
This package enables regression and classification on high-dimensional data with different relative strengths of penalization for different feature groups, such as different assays or omic types. The optimal relative strengths are chosen adaptively. Optimisation is performed using a variational Bayes approach.
This package defines classes for representing genomic intervals and provides functions and methods for working with these. Note: The package provides the basic infrastructure for and is enhanced by the package girafe'.
GenomicTuples defines general purpose containers for storing genomic tuples. It aims to provide functionality for tuples of genomic co-ordinates that are analogous to those available for genomic ranges in the GenomicRanges Bioconductor package.
glmSparseNet is an R-package that generalizes sparse regression models when the features (e.g. genes) have a graph structure (e.g. protein-protein interactions), by including network-based regularizers. glmSparseNet uses the glmnet R-package, by including centrality measures of the network as penalty weights in the regularization. The current version implements regularization based on node degree, i.e. the strength and/or number of its associated edges, either by promoting hubs in the solution or orphan genes in the solution. All the glmnet distribution families are supported, namely "gaussian", "poisson", "binomial", "multinomial", "cox", and "mgaussian".
This package provides a visual exploration tool for multiple sequence alignment and associated data. Supports MSA of DNA, RNA, and protein sequences using ggplot2'. Multiple sequence alignment can easily be combined with other ggplot2 plots, such as phylogenetic tree Visualized by ggtree', boxplot, genome map and so on. More features: visualization of sequence logos, sequence bundles, RNA secondary structures and detection of sequence recombinations.
Package is a part of the gDR suite. It reexports functions from other packages in the gDR suite that contain critical processing functions and utilities. The vignette walks through the full processing pipeline for drug response analyses that the gDR suite offers.
The package implements methods to compare lists of genes based on comparing the corresponding functional profiles'.
GNOSIS incorporates a range of R packages enabling users to efficiently explore and visualise clinical and genomic data obtained from cBioPortal. GNOSIS uses an intuitive GUI and multiple tab panels supporting a range of functionalities. These include data upload and initial exploration, data recoding and subsetting, multiple visualisations, survival analysis, statistical analysis and mutation analysis, in addition to facilitating reproducible research.
TCGA processed RNA-Seq data for 9264 tumor and 741 normal samples across 24 cancer types and made them available as GEO accession [GSE62944](http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944). GSE62944 data have been parsed into a SummarizedExperiment object available in ExperimentHub.
Low- and high-level wrappers for Gemma's RESTful API. They enable access to curated expression and differential expression data from over 10,000 published studies. Gemma is a web site, database and a set of tools for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles.
Visualization functions for spatial transcriptomics data. Includes functions to generate several types of plots, including spot plots, feature (molecule) plots, reduced dimension plots, spot-level quality control (QC) plots, and feature-level QC plots, for datasets from the 10x Genomics Visium and other technological platforms. Datasets are assumed to be in either SpatialExperiment or SingleCellExperiment format.
Simple visualizations of alignments of DNA or AA sequences as well as arbitrary strings. Compatible with Biostrings and ggplot2. The plots are fully customizable using ggplot2 modifiers such as theme().
This package implements inferential methods to compare gene lists in terms of their biological meaning as expressed in the GO. The compared gene lists are characterized by cross-tabulation frequency tables of enriched GO items. Dissimilarity between gene lists is evaluated using the Sorensen-Dice index. The fundamental guiding principle is that two gene lists are taken as similar if they share a great proportion of common enriched GO items.
This package aims at representing and summarizing the entire single-cell profile of a sample. It allows researchers to perform important bioinformatic analyses at the sample-level such as visualization and quality control. The main functions Estimate sample distribution and calculate statistical divergence among samples, and visualize the distance matrix through MDS plots.