Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
[GAprediction] predicts gestational age using Illumina HumanMethylation450 CpG data.
Find the most characteristic gene ontology terms for groups of human genes. This package was created as a part of the thesis which was developed under the auspices of MI^2 Group (http://mi2.mini.pw.edu.pl/, https://github.com/geneticsMiNIng).
The package is a part of the gDR suite. It helps to prepare raw drug response data for downstream processing. It mainly contains helper functions for importing/loading/validating dose-response data provided in different file formats.
R based Genetic algorithm for gene expression optimization by considering both mRNA secondary structure and codon usage bias, GeneGA includes the information of highly expressed genes of almost 200 genomes. Meanwhile, Vienna RNA Package is needed to ensure GeneGA to function properly.
GladiaTOX R package is an open-source, flexible solution to high-content screening data processing and reporting in biomedical research. GladiaTOX takes advantage of the tcpl core functionalities and provides a number of extensions: it provides a web-service solution to fetch raw data; it computes severity scores and exports ToxPi formatted files; furthermore it contains a suite of functionalities to generate pdf reports for quality control and data processing.
The geomeTriD (Three-Dimensional Geometry) Package provides interactive 3D visualization of chromatin structures using the WebGL-based three.js (https://threejs.org/) or the rgl rendering library. It is designed to identify and explore spatial chromatin patterns within genomic regions. The package generates dynamic 3D plots and HTML widgets that integrate seamlessly with Shiny applications, enabling researchers to visualize chromatin organization, detect spatial features, and compare structural dynamics across different conditions and data types.
Offers a set of autoplot methods to visualize tree-like structures (e.g., hierarchical clustering and classification/regression trees) using ggtree'. You can adjust graphical parameters using grammar of graphic syntax and integrate external data to the tree.
gwasurvivr is a package to perform survival analysis using Cox proportional hazard models on imputed genetic data.
This package provides a collection of meta-analysis tools for analysing high throughput experimental data.
This package contains core functions to process and analyze drug response data. The package provides tools for normalizing, averaging, and calculation of gDR metrics data. All core functions are wrapped into the pipeline function allowing analyzing the data in a straightforward way.
This package provides a series of statistical models using count generating distributions for background modelling, feature and sample QC, normalization and differential expression analysis on GeoMx RNA data. The application of these methods are demonstrated by example data analysis vignette.
The GENESIS package provides methodology for estimating, inferring, and accounting for population and pedigree structure in genetic analyses. The current implementation provides functions to perform PC-AiR (Conomos et al., 2015, Gen Epi) and PC-Relate (Conomos et al., 2016, AJHG). PC-AiR performs a Principal Components Analysis on genome-wide SNP data for the detection of population structure in a sample that may contain known or cryptic relatedness. Unlike standard PCA, PC-AiR accounts for relatedness in the sample to provide accurate ancestry inference that is not confounded by family structure. PC-Relate uses ancestry representative principal components to adjust for population structure/ancestry and accurately estimate measures of recent genetic relatedness such as kinship coefficients, IBD sharing probabilities, and inbreeding coefficients. Additionally, functions are provided to perform efficient variance component estimation and mixed model association testing for both quantitative and binary phenotypes.
The package clusters gene activity along chromosome into zones, detects differential zones as outstanding, and visualizes maps of outstanding zones across the genome. It enables characterization of effects on multiple genes within adaptive genomic neighborhoods, which could arise from genome reorganization, structural variation, or epigenome alteration. It guarantees cluster optimality, linear runtime to sample size, and reproducibility. One can apply it on genome-wide activity measurements such as copy number, transcriptomic, proteomic, and methylation data.
G-quadruplexes (G4s) are unique nucleic acid secondary structures predominantly found in guanine-rich regions and have been shown to be involved in various biological regulatory processes. G4SNVHunter is an R package designed to rapidly identify genomic sequences with G4-forming propensity and to accurately screen user-provided single nucleotide variants—as well as other small-scale variants such as indels and MNVs—for their potential to destabilize these structures. This allows researchers to then screen these critical variants for deeper study, digging into how they might influence biological functions—think gene regulation, for instance—by impairing G4 formation propensity.
Recurrent breakpoint gene detection on copy number aberration profiles.
Selected Affymetrix and Illlumina SNP data for HapMap subjects. Data provided by the Center for Inherited Disease Research at Johns Hopkins University and the Broad Institute of MIT and Harvard University.
GSALightning provides a fast implementation of permutation-based gene set analysis for two-sample problem. This package is particularly useful when testing simultaneously a large number of gene sets, or when a large number of permutations is necessary for more accurate p-values estimation.
This package contains functions implementing various tasks usually required by gene expression analysis, especially in breast cancer studies: gene mapping between different microarray platforms, identification of molecular subtypes, implementation of published gene signatures, gene selection, and survival analysis.
This package provides tools for analyzing EWAS, methQTL and GxE genome widely.
Peak calling for ChIP-seq data with consideration of potential GC bias in sequencing reads. GC bias is first estimated with generalized linear mixture models using effective GC strategy, then applied into peak significance estimation.
Data from PMID 11102521.
Models and methods for fitting linear models to gene expression data, together with tools for computing and using various regression diagnostics.
This package provides tools for NanoString Technologies GeoMx Technology. Package provides functions for reading in DCC and PKC files based on an ExpressionSet derived object. Normalization and QC functions are also included.
The GenomicInteractionNodes package can import interactions from bedpe file and define the interaction nodes, the genomic interaction sites with multiple interaction loops. The interaction nodes is a binding platform regulates one or multiple genes. The detected interaction nodes will be annotated for downstream validation.