Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains 30 Affymetrix CEL files for 7 Adenocarcinoma (AC) and 8 Squamous cell carcinoma (SCC) lung cancer samples taken at random from 3 GEO datasets (GSE10245, GSE18842 and GSE2109) and other 15 samples from a dataset produced by the organizers of the IMPROVER Diagnostic Signature Challenge available from GEO (GSE43580).
This package provides a Graphical User Interface for differential expression analysis of two-color microarray data using the limma package.
LACE is an algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a weighed likelihood function computed on multiple time points.
LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples, can be used to reconstruct single-sample networks (https://arxiv.org/abs/1505.06440). This code implements the LIONESS equation in the lioness function in R to reconstruct single-sample networks. The default network reconstruction method we use is based on Pearson correlation. However, lionessR can run on any network reconstruction algorithms that returns a complete, weighted adjacency matrix. lionessR works for both unipartite and bipartite networks.
Illumina Human Illumina expression annotation data (chip lumiHumanAll) assembled using data from public repositories.
This package provides a package containing the data to run LowMACA package.
lisaClust provides a series of functions to identify and visualise regions of tissue where spatial associations between cell-types is similar. This package can be used to provide a high-level summary of cell-type colocalization in multiplexed imaging data that has been segmented at a single-cell resolution.
loci2path performs statistics-rigorous enrichment analysis of eQTLs in genomic regions of interest. Using eQTL collections provided by the Genotype-Tissue Expression (GTEx) project and pathway collections from MSigDB.
Data from three large lung cancer studies provided as ExpressionSets.
Here we present Link-HD, an approach to integrate heterogeneous datasets, as a generalization of STATIS-ACT (“Structuration des Tableaux A Trois Indices de la Statistique–Analyse Conjointe de Tableaux”), a family of methods to join and compare information from multiple subspaces. However, STATIS-ACT has some drawbacks since it only allows continuous data and it is unable to establish relationships between samples and features. In order to tackle these constraints, we incorporate multiple distance options and a linear regression based Biplot model in order to stablish relationships between observations and variable and perform variable selection.
The package contains functions for calculate direct and model-based estimators for liquid association. It also provides functions for testing the existence of liquid association given a gene triplet data.
This package provides annotation databases that support the package LymphoSeq.
This package provides a package containing metadata for LAPOINTE arrays assembled using data from public repositories.
The goal of LRcell is to identify specific sub-cell types that drives the changes observed in a bulk RNA-seq differential gene expression experiment. To achieve this, LRcell utilizes sets of cell marker genes acquired from single-cell RNA-sequencing (scRNA-seq) as indicators for various cell types in the tissue of interest. Next, for each cell type, using its marker genes as indicators, we apply Logistic Regression on the complete set of genes with differential expression p-values to calculate a cell-type significance p-value. Finally, these p-values are compared to predict which one(s) are likely to be responsible for the differential gene expression pattern observed in the bulk RNA-seq experiments. LRcell is inspired by the LRpath[@sartor2009lrpath] algorithm developed by Sartor et al., originally designed for pathway/gene set enrichment analysis. LRcell contains three major components: LRcell analysis, plot generation and marker gene selection. All modules in this package are written in R. This package also provides marker genes in the Prefrontal Cortex (pFC) human brain region, human PBMC and nine mouse brain regions (Frontal Cortex, Cerebellum, Globus Pallidus, Hippocampus, Entopeduncular, Posterior Cortex, Striatum, Substantia Nigra and Thalamus).
Differential expression analysis is a prevalent method utilised in the examination of diverse biological data. The reproducibility-optimized test statistic (ROTS) modifies a t-statistic based on the data's intrinsic characteristics and ranks features according to their statistical significance for differential expression between two or more groups (f-statistic). Focussing on proteomics and metabolomics, the current ROTS implementation cannot account for technical or biological covariates such as MS batches or gender differences among the samples. Consequently, we developed LimROTS, which employs a reproducibility-optimized test statistic utilising the limma methodology to simulate complex experimental designs. LimROTS is a hybrid method integrating empirical bayes and reproducibility-optimized statistics for robust analysis of proteomics and metabolomics data.
Quantification and differential analysis of mass-spectrometry proteomics data, with probabilistic recovery of information from missing values. Avoids the need for imputation. Estimates the detection probability curve (DPC), which relates the probability of successful detection to the underlying log-intensity of each precursor ion, and uses it to incorporate missing values into protein quantification and into subsequent differential expression analyses. The package produces objects suitable for downstream analysis in limma. The package accepts precursor (or peptide) intensities including missing values and produces complete protein quantifications without the need for imputation. The uncertainty of the protein quantifications is propagated through to the limma analyses using variance modeling and precision weights, ensuring accurate error rate control. The analysis pipeline can alternatively work with PTM or protein level data. The package name "limpa" is an acronym for "Linear Models for Proteomics Data".
Fit a latent embedding multivariate regression (LEMUR) model to multi-condition single-cell data. The model provides a parametric description of single-cell data measured with treatment vs. control or more complex experimental designs. The parametric model is used to (1) align conditions, (2) predict log fold changes between conditions for all cells, and (3) identify cell neighborhoods with consistent log fold changes. For those neighborhoods, a pseudobulked differential expression test is conducted to assess which genes are significantly changed.
Enables the interactive visualization of dimensional reduction, clustering, and cell properties for scRNA-Seq results. It generates an interactive HTML page using either a numeric matrix, SummarizedExperiment, SingleCellExperiment or Seurat objects as input. The input data can be projected into two-dimensional representations by applying dimensionality reduction methods such as PCA, MDS, t-SNE, UMAP, and NMF. Displaying multiple dimensionality reduction results within the same interface, with interconnected graphs, provides different perspectives that facilitate accurate cell classification. The package also integrates unsupervised clustering techniques, whose results that can be viewed interactively in the graphical interface. In addition to visualization, this interface allows manual selection of groups, labeling of cell entities based on processed meta-information, generation of new graphs displaying gene expression values for each cell, sample identification, and visual comparison of samples and clusters.
LegATo is a suite of open-source software tools for longitudinal microbiome analysis. It is extendable to several different study forms with optimal ease-of-use for researchers. Microbiome time-series data presents distinct challenges including complex covariate dependencies and variety of longitudinal study designs. This toolkit will allow researchers to determine which microbial taxa are affected over time by perturbations such as onset of disease or lifestyle choices, and to predict the effects of these perturbations over time, including changes in composition or stability of commensal bacteria.
This LPE library is used to do significance analysis of microarray data with small number of replicates. It uses resampling based FDR adjustment, and gives less conservative results than traditional BH or BY procedures. Data accepted is raw data in txt format from MAS4, MAS5 or dChip. Data can also be supplied after normalization. LPE library is primarily used for analyzing data between two conditions. To use it for paired data, see LPEP library. For using LPE in multiple conditions, use HEM library.
Interface to construct LRBase package (LRBase.XXX.eg.db).
Lineagespot is a framework written in R, and aims to identify SARS-CoV-2 related mutations based on a single (or a list) of variant(s) file(s) (i.e., variant calling format). The method can facilitate the detection of SARS-CoV-2 lineages in wastewater samples using next generation sequencing, and attempts to infer the potential distribution of the SARS-CoV-2 lineages.
This package includes mappings information between different types of Illumina IDs of Illumina Mouse chips and nuIDs. It also includes mappings of all nuIDs included in Illumina Mouse chips to RefSeq IDs with mapping qualities information.
"LipidTrend" is an R package that implements a permutation-based statistical test to identify significant differences in lipidomic features between groups. The test incorporates Gaussian kernel smoothing of region statistics to improve stability and accuracy, particularly when dealing with small sample sizes. This package also includes two plotting functions for visualizing significant tendencies in 1D and 2D feature data, respectively.