Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
This package provides a package containing an environment representing the Mu19KsubA.CDF file.
The MsDataHub package uses the ExperimentHub infrastructure to distribute raw mass spectrometry data files, peptide spectrum matches or quantitative data from proteomics and metabolomics experiments.
mbQTL is a statistical R package for simultaneous 16srRNA,16srDNA (microbial) and variant, SNP, SNV (host) relationship, correlation, regression studies. We apply linear, logistic and correlation based statistics to identify the relationships of taxa, genus, species and variant, SNP, SNV in the infected host. We produce various statistical significance measures such as P values, FDR, BC and probability estimation to show significance of these relationships. Further we provide various visualization function for ease and clarification of the results of these analysis. The package is compatible with dataframe, MRexperiment and text formats.
This package provides a collection of microRNAs/targets from external resources, including validated microRNA-target databases (miRecords, miRTarBase and TarBase), predicted microRNA-target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan) and microRNA-disease/drug databases (miR2Disease, Pharmaco-miR VerSe and PhenomiR).
MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes.
The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.
Stores expression profiling data from experiments compatible with the multiWGCNA R package. This includes human postmortem microarray data from patients and controls (GSE28521), astrocyte Ribotag RNA-seq data from EAE and wildtype mice (GSE100329), and mouse RNA-seq data from tau pathology (rTg4510) and wildtype control mice (GSE125957). These data can be accessed using the ExperimentHub workflow (see multiWGCNA vignettes).
This package provides data access to counts matrices and meta-data for single-cell RNA sequencing data of thymic epithlial cells across mouse ageing using SMARTseq2 and 10X Genommics chemistries. Access is provided as a data package via ExperimentHub. It is designed to facilitate the re-use of data from Baran-Gale _et al._ in a consistent format that includes relevant and informative meta-data.
Estimates gene expressions from several laser scans of the same microarray.
Indole-3-acetaldoxime (IAOx) represents an early intermediate of the biosynthesis of a variety of indolic secondary metabolites including the phytoanticipin indol-3-ylmethyl glucosinolate and the phytoalexin camalexin (3-thiazol-2'-yl-indole). Arabidopsis thaliana cyp79B2 cyp79B3 double knockout plants are completely impaired in the conversion of tryptophan to indole-3-acetaldoxime and do not accumulate IAOx-derived metabolites any longer. Consequently, comparative analysis of wild-type and cyp79B2 cyp79B3 plant lines has the potential to explore the complete range of IAOx-derived indolic secondary metabolites.
This package provides a package containing an environment representing the MOE430A.CDF file.
This package was created by frmaTools version 1.19.3 and hgu133ahsentrezgcdf version 19.0.0.
It contains functions for estimating the DNA copy number profile using mBPCR with the aim of detecting regions with copy number changes.
Provide tools exploring miRNA-mRNA relationships, including popular miRNA target prediction methods, ensemble methods that integrate individual methods, functions to get data from online resources, functions to validate the results, and functions to conduct enrichment analyses.
MS-based metabolomics data processing and compound annotation pipeline.
MaAsLin 3 refines and extends generalized multivariate linear models for meta-omicron association discovery. It finds abundance and prevalence associations between microbiome meta-omics features and complex metadata in population-scale epidemiological studies. The software includes multiple analysis methods (including support for multiple covariates, repeated measures, and ordered predictors), filtering, normalization, and transform options to customize analysis for your specific study.
Raw amplification data from a large microRNA mixture / dilution study. These data are used by the miRcomp package to assess the performance of methods that estimate expression from the amplification curves.
This package provides a package containing an environment representing the Mu11KsubA.CDF file.
This package provides a SummarizedExperiment object of read counts for microRNAs across tissues, cell-types, and cancer cell-lines. The read count matrix was prepared and provided by the author of the study: Towards the human cellular microRNAome.
MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. *mygene*, is an easy-to-use R wrapper to access MyGene.Info_ services.
mitch is an R package for multi-contrast enrichment analysis. At it’s heart, it uses a rank-MANOVA based statistical approach to detect sets of genes that exhibit enrichment in the multidimensional space as compared to the background. The rank-MANOVA concept dates to work by Cox and Mann (https://doi.org/10.1186/1471-2105-13-S16-S12). mitch is useful for pathway analysis of profiling studies with one, two or more contrasts, or in studies with multiple omics profiling, for example proteomic, transcriptomic, epigenomic analysis of the same samples. mitch is perfectly suited for pathway level differential analysis of scRNA-seq data. We have an established routine for pathway enrichment of Infinium Methylation Array data (see vignette). The main strengths of mitch are that it can import datasets easily from many upstream tools and has advanced plotting features to visualise these enrichments.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74B\_probe\_tab.
This package primarily identifies variants in mitochondrial genomes from BAM alignment files. It filters these variants to remove RNA editing events then estimates their evolutionary relationship (i.e. their phylogenetic tree) and groups single cells into clones. It also visualizes the mutations and providing additional genomic context.