_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-cliquepercolation 0.4.0
Propagated dependencies: r-qgraph@1.9.8 r-polychrome@1.5.4 r-pbapply@1.7-4 r-ohenery@0.1.4 r-matrix@1.7-4 r-magrittr@2.0.4 r-lessr@4.5.1 r-igraph@2.2.1 r-colorspace@2.1-2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CliquePercolation
Licenses: GPL 3
Build system: r
Synopsis: Clique Percolation for Networks
Description:

Clique percolation community detection for weighted and unweighted networks as well as threshold and plotting functions. For more information see Farkas et al. (2007) <doi:10.1088/1367-2630/9/6/180> and Palla et al. (2005) <doi:10.1038/nature03607>.

r-calidad 0.8.2
Propagated dependencies: r-survey@4.4-8 r-stringr@1.6.0 r-rlang@1.1.6 r-purrr@1.2.0 r-kableextra@1.4.0 r-haven@2.5.5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=calidad
Licenses: GPL 3
Build system: r
Synopsis: Assesses the Quality of Estimates Made by Complex Sample Designs
Description:

Assesses the quality of estimates made by complex sample designs, following the methodology developed by the National Institute of Statistics Chile (Household Survey Standard 2020, <https://www.ine.cl/docs/default-source/institucionalidad/buenas-pr%C3%A1cticas/clasificaciones-y-estandares/est%C3%A1ndar-evaluaci%C3%B3n-de-calidad-de-estimaciones-publicaci%C3%B3n-27022020.pdf>), (Economics Survey Standard 2024, <https://www.ine.gob.cl/docs/default-source/buenas-practicas/directrices-metodologicas/estandares/documentos/est%C3%A1ndar-evaluaci%C3%B3n-de-calidad-de-estimaciones-econ%C3%B3micas.pdf?sfvrsn=201fbeb9_2>) and by Economic Commission for Latin America and Caribbean (2020, <https://repositorio.cepal.org/bitstream/handle/11362/45681/1/S2000293_es.pdf>), (2024, <https://repositorio.cepal.org/server/api/core/bitstreams/f04569e6-4f38-42e7-a32b-e0b298e0ab9c/content>).

r-counterfactual 1.2
Propagated dependencies: r-survival@3.8-3 r-quantreg@6.1 r-hmisc@5.2-4 r-foreach@1.5.2 r-dorng@1.8.6.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=Counterfactual
Licenses: GPL 2+
Build system: r
Synopsis: Estimation and Inference Methods for Counterfactual Analysis
Description:

This package implements the estimation and inference methods for counterfactual analysis described in Chernozhukov, Fernandez-Val and Melly (2013) <DOI:10.3982/ECTA10582> "Inference on Counterfactual Distributions," Econometrica, 81(6). The counterfactual distributions considered are the result of changing either the marginal distribution of covariates related to the outcome variable of interest, or the conditional distribution of the outcome given the covariates. They can be applied to estimate quantile treatment effects and wage decompositions.

r-crumble 0.1.2
Propagated dependencies: r-torch@0.16.3 r-s7@0.2.1 r-rsymphony@0.1-33 r-purrr@1.2.0 r-progressr@0.18.0 r-origami@1.0.7 r-mlr3superlearner@0.1.2 r-matrix@1.7-4 r-lmtp@1.5.3 r-ife@0.2.3 r-generics@0.1.4 r-data-table@1.17.8 r-coro@1.1.0 r-cli@3.6.5 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=crumble
Licenses: GPL 3+
Build system: r
Synopsis: Flexible and General Mediation Analysis Using Riesz Representers
Description:

This package implements a modern, unified estimation strategy for common mediation estimands (natural effects, organic effects, interventional effects, and recanting twins) in combination with modified treatment policies as described in Liu, Williams, Rudolph, and DÃ az (2024) <doi:10.48550/arXiv.2408.14620>. Estimation makes use of recent advancements in Riesz-learning to estimate a set of required nuisance parameters with deep learning. The result is the capability to estimate mediation effects with binary, categorical, continuous, or multivariate exposures with high-dimensional mediators and mediator-outcome confounders using machine learning.

r-conttimecausal 1.1
Propagated dependencies: r-zoo@1.8-14 r-survival@3.8-3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=contTimeCausal
Licenses: GPL 2+
Build system: r
Synopsis: Continuous Time Causal Models
Description:

This package implements the semiparametric efficient estimators of continuous-time causal models for time-varying treatments and confounders in the presence of dependent censoring (including structural failure time model and Cox proportional hazards marginal structural model). S. Yang, K. Pieper, and F. Cools (2019) <doi:10.1111/biom.12845>.

r-cctools 0.1.3
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-qrng@0.0-11
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cctools
Licenses: GPL 3
Build system: r
Synopsis: Tools for the Continuous Convolution Trick in Nonparametric Estimation
Description:

This package implements the uniform scaled beta distribution and the continuous convolution kernel density estimator.

r-cfdecomp 0.4.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cfdecomp
Licenses: GPL 3
Build system: r
Synopsis: Counterfactual Decomposition: MC Integration of the G-Formula
Description:

This package provides a set of functions for counterfactual decomposition (cfdecomp). The functions available in this package decompose differences in an outcome attributable to a mediating variable (or sets of mediating variables) between groups based on counterfactual (causal inference) theory. By using Monte Carlo (MC) integration (simulations based on empirical estimates from multivariable models) we provide added flexibility compared to existing (analytical) approaches, at the cost of computational power or time. The added flexibility means that we can decompose difference between groups in any outcome or and with any mediator (any variable type and distribution). See Sudharsanan & Bijlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.

r-cobiclust 0.1.2
Propagated dependencies: r-testthat@3.3.0 r-cluster@2.1.8.1 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/julieaubert/cobiclust
Licenses: GPL 3
Build system: r
Synopsis: Biclustering via Latent Block Model Adapted to Overdispersed Count Data
Description:

Implementation of a probabilistic method for biclustering adapted to overdispersed count data. It is a Gamma-Poisson Latent Block Model. It also implements two selection criteria in order to select the number of biclusters.

r-coat 0.2.2
Propagated dependencies: r-partykit@1.2-24
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=coat
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Conditional Method Agreement Trees (COAT)
Description:

Agreement of continuously scaled measurements made by two techniques, devices or methods is usually evaluated by the well-established Bland-Altman analysis or plot. Conditional method agreement trees (COAT), proposed by Karapetyan, Zeileis, Henriksen, and Hapfelmeier (2025) <doi:10.1093/jrsssc/qlae077>, embed the Bland-Altman analysis in the framework of recursive partitioning to explore heterogeneous method agreement in dependence of covariates. COAT can also be used to perform a Bland-Altman test for differences in method agreement.

r-censusapi 0.9.0
Propagated dependencies: r-rlang@1.1.6 r-jsonlite@2.0.0 r-httr@1.4.7
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.hrecht.com/censusapi/
Licenses: GPL 3
Build system: r
Synopsis: Retrieve Data from the Census APIs
Description:

This package provides a wrapper for the U.S. Census Bureau APIs that returns data frames of Census data and metadata. Available datasets include the Decennial Census, American Community Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, Population Estimates and Projections, and more.

r-cutools 0.1.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CUtools
Licenses: GPL 3
Build system: r
Synopsis: Clinical Utility Tools to Analyze a Predictive Model
Description:

Package to analyze the clinical utility of a biomarker. It provides the clinical utility curve, clinical utility table, efficacy of a biomarker, clinical efficacy curve and tests to compare efficacy between markers.

r-cautiouslearning 1.0.1
Propagated dependencies: r-spc@0.7.2 r-sitmo@2.0.2 r-rcpp@1.1.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CautiousLearning
Licenses: Expat
Build system: r
Synopsis: Control Charts with Guaranteed In-Control Performance and Cautious Parameters Learning
Description:

Design and use of control charts for detecting mean changes based on a delayed updating of the in-control parameter estimates. See Capizzi and Masarotto (2019) <doi:10.1080/00224065.2019.1640096> for the description of the method.

r-comphy 1.0.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/jfoadi/comphy
Licenses: GPL 2+
Build system: r
Synopsis: Functions Used in the Book "Computational Physics with R"
Description:

This package provides a collection of functions described and used in the book Foadi (2026, ISBN:9780750326308) "Computational Physics with R". These include routines for numerical differentiation, integration, differential equations, eigenvalue problems, Monte Carlo methods, and other algorithms relevant to computational physics.

r-cholwishart 1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://gzt.github.io/CholWishart/
Licenses: GPL 3+
Build system: r
Synopsis: Cholesky Decomposition of the Wishart Distribution
Description:

Sampling from the Cholesky factorization of a Wishart random variable, sampling from the inverse Wishart distribution, sampling from the Cholesky factorization of an inverse Wishart random variable, sampling from the pseudo Wishart distribution, sampling from the generalized inverse Wishart distribution, computing densities for the Wishart and inverse Wishart distributions, and computing the multivariate gamma and digamma functions. Provides a header file so the C functions can be called directly from other programs.

r-cdltools 1.13
Propagated dependencies: r-terra@1.8-86 r-stringr@1.6.0 r-rvest@1.0.5 r-raster@3.6-32 r-httr@1.4.7
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/jlisic/cdlTools
Licenses: FSDG-compatible
Build system: r
Synopsis: Tools to Download and Work with USDA Cropscape Data
Description:

Downloads USDA National Agricultural Statistics Service (NASS) cropscape data for a specified state. Utilities for fips, abbreviation, and name conversion are also provided. Full functionality requires an internet connection, but data sets can be cached for later off-line use.

r-condformat 0.10.1
Propagated dependencies: r-tidyselect@1.2.1 r-tibble@3.3.0 r-scales@1.4.0 r-rmarkdown@2.30 r-rlang@1.1.6 r-openxlsx@4.2.8.1 r-magrittr@2.0.4 r-knitr@1.50 r-htmltools@0.5.8.1 r-htmltable@2.4.3 r-gtable@0.3.6 r-gridextra@2.3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://zeehio.github.io/condformat/
Licenses: Modified BSD
Build system: r
Synopsis: Conditional Formatting in Data Frames
Description:

Apply and visualize conditional formatting to data frames in R. It renders a data frame with cells formatted according to criteria defined by rules, using a tidy evaluation syntax. The table is printed either opening a web browser or within the RStudio viewer if available. The conditional formatting rules allow to highlight cells matching a condition or add a gradient background to a given column. This package supports both HTML and LaTeX outputs in knitr reports, and exporting to an xlsx file.

r-crmn 0.0.21
Propagated dependencies: r-pcamethods@2.2.0 r-biobase@2.70.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/hredestig/crmn
Licenses: GPL 3+
Build system: r
Synopsis: CCMN and Other Normalization Methods for Metabolomics Data
Description:

This package implements the Cross-contribution Compensating Multiple standard Normalization (CCMN) method described in Redestig et al. (2009) Analytical Chemistry <doi:10.1021/ac901143w> and other normalization algorithms.

r-colors3d 1.0.1
Propagated dependencies: r-scales@1.4.0 r-plyr@1.8.9 r-fnn@1.1.4.1 r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/matthewkling/colors3d
Licenses: Expat
Build system: r
Synopsis: Generate 2D and 3D Color Palettes
Description:

Generate multivariate color palettes to represent two-dimensional or three-dimensional data in graphics (in contrast to standard color palettes that represent just one variable). You tell colors3d how to map color space onto your data, and it gives you a color for each data point. You can then use these colors to make plots in base R', ggplot2', or other graphics frameworks.

r-cba 0.2-25
Propagated dependencies: r-proxy@0.4-27
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cba
Licenses: GPL 2
Build system: r
Synopsis: Clustering for Business Analytics
Description:

This package implements clustering techniques such as Proximus and Rock, utility functions for efficient computation of cross distances and data manipulation.

r-clintrialx 0.1.1
Propagated dependencies: r-tibble@3.3.0 r-rpostgresql@0.7-8 r-rmarkdown@2.30 r-readr@2.1.6 r-progress@1.2.3 r-lubridate@1.9.4 r-httr@1.4.7 r-dplyr@1.1.4 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: http://www.indraneelchakraborty.com/clintrialx/
Licenses: ASL 2.0
Build system: r
Synopsis: Connect and Work with Clinical Trials Data Sources
Description:

Are you spending too much time fetching and managing clinical trial data? Struggling with complex queries and bulk data extraction? What if you could simplify this process with just a few lines of code? Introducing clintrialx - Fetch clinical trial data from sources like ClinicalTrials.gov <https://clinicaltrials.gov/> and the Clinical Trials Transformation Initiative - Access to Aggregate Content of ClinicalTrials.gov database <https://aact.ctti-clinicaltrials.org/>, supporting pagination and bulk downloads. Also, you can generate HTML reports based on the data obtained from the sources!

r-czso 0.4.4
Propagated dependencies: r-tibble@3.3.0 r-stringi@1.8.7 r-rlang@1.1.6 r-readr@2.1.6 r-magrittr@2.0.4 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-httr@1.4.7 r-dplyr@1.1.4 r-curl@7.0.0 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/petrbouchal/czso
Licenses: Expat
Build system: r
Synopsis: Use Open Data from the Czech Statistical Office in R
Description:

Get programmatic access to the open data provided by the Czech Statistical Office (CZSO, <https://csu.gov.cz>).

r-chords 0.95.4
Propagated dependencies: r-matrix@1.7-4 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=chords
Licenses: GPL 2
Build system: r
Synopsis: Estimation in Respondent Driven Samples
Description:

Maximum likelihood estimation in respondent driven samples.

r-clustshiny 0.1.0
Propagated dependencies: r-shiny@1.11.1 r-rmarkdown@2.30 r-psycho@0.6.1 r-mass@7.3-65 r-klar@1.7-3 r-dplyr@1.1.4 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CLUSTShiny
Licenses: GPL 2
Build system: r
Synopsis: Interactive Document for Working with Cluster Analysis
Description:

An interactive document on the topic of cluster analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/ClusterAnalysis/>.

r-compositional 8.0
Propagated dependencies: r-sn@2.1.1 r-rnanoflann@0.0.3 r-rgl@1.3.31 r-rfast2@0.1.5.5 r-rfast@2.1.5.2 r-quantreg@6.1 r-quadprog@1.5-8 r-nnet@7.3-20 r-mixture@2.2.0 r-minpack-lm@1.2-4 r-mda@0.5-5 r-matrix@1.7-4 r-mass@7.3-65 r-glmnet@4.1-10 r-foreach@1.5.2 r-energy@1.7-12 r-emplik@1.3-2 r-doparallel@1.0.17 r-cluster@2.1.8.1 r-bigstatsr@1.6.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=Compositional
Licenses: GPL 2+
Build system: r
Synopsis: Compositional Data Analysis
Description:

Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included. We further include functions for percentages (or proportions). The standard textbook for such data is John Aitchison's (1986) "The statistical analysis of compositional data". Relevant papers include: a) Tsagris M.T., Preston S. and Wood A.T.A. (2011). "A data-based power transformation for compositional data". Fourth International International Workshop on Compositional Data Analysis. <doi:10.48550/arXiv.1106.1451>. b) Tsagris M. (2014). "The k-NN algorithm for compositional data: a revised approach with and without zero values present". Journal of Data Science, 12(3): 519--534. <doi:10.6339/JDS.201407_12(3).0008>. c) Tsagris M. (2015). "A novel, divergence based, regression for compositional data". Proceedings of the 28th Panhellenic Statistics Conference, 15-18 April 2015, Athens, Greece, 430--444. <doi:10.48550/arXiv.1511.07600>. d) Tsagris M. (2015). "Regression analysis with compositional data containing zero values". Chilean Journal of Statistics, 6(2): 47--57. <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>. e) Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved supervised classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>. f) Tsagris M., Preston S. and Wood A.T.A. (2017). "Nonparametric hypothesis testing for equality of means on the simplex". Journal of Statistical Computation and Simulation, 87(2): 406--422. <doi:10.1080/00949655.2016.1216554>. g) Tsagris M. and Stewart C. (2018). "A Dirichlet regression model for compositional data with zeros". Lobachevskii Journal of Mathematics, 39(3): 398--412. <doi:10.1134/S1995080218030198>. h) Alenazi A. (2019). "Regression for compositional data with compositional data as predictor variables with or without zero values". Journal of Data Science, 17(1): 219--238. <doi:10.6339/JDS.201901_17(1).0010>. i) Tsagris M. and Stewart C. (2020). "A folded model for compositional data analysis". Australian and New Zealand Journal of Statistics, 62(2): 249--277. <doi:10.1111/anzs.12289>. j) Alenazi A.A. (2022). "f-divergence regression models for compositional data". Pakistan Journal of Statistics and Operation Research, 18(4): 867--882. <doi:10.18187/pjsor.v18i4.3969>. k) Tsagris M. and Stewart C. (2022). "A Review of Flexible Transformations for Modeling Compositional Data". In Advances and Innovations in Statistics and Data Science, pp. 225--234. <doi:10.1007/978-3-031-08329-7_10>. l) Alenazi A. (2023). "A review of compositional data analysis and recent advances". Communications in Statistics--Theory and Methods, 52(16): 5535--5567. <doi:10.1080/03610926.2021.2014890>. m) Tsagris M., Alenazi A. and Stewart C. (2023). "Flexible non-parametric regression models for compositional response data with zeros". Statistics and Computing, 33(106). <doi:10.1007/s11222-023-10277-5>. n) Tsagris. M. (2025). "Constrained least squares simplicial-simplicial regression". Statistics and Computing, 35(27). <doi:10.1007/s11222-024-10560-z>. o) Sevinc V. and Tsagris. M. (2024). "Energy Based Equality of Distributions Testing for Compositional Data". <doi:10.48550/arXiv.2412.05199>. p) Tsagris M. (2025). "Scalable approximation of the transformation-free linear simplicial-simplicial regression via constrained iterative reweighted least squares". <doi:10.48550/arXiv.2511.13296>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283