Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Collection of routines for efficient scientific computations in physics and astrophysics. These routines include utility functions, numerical computation tools, as well as visualisation tools. They can be used, for example, for generating random numbers from spherical and custom distributions, information and entropy analysis, special Fourier transforms, two-point correlation estimation (e.g. as in Landy & Szalay (1993) <doi:10.1086/172900>), binning & gridding of point sets, 2D interpolation, Monte Carlo integration, vector arithmetic and coordinate transformations. Also included is a non-exhaustive list of important constants and cosmological conversion functions. The graphics routines can be used to produce and export publication-ready scientific plots and movies, e.g. as used in Obreschkow et al. (2020, MNRAS Vol 493, Issue 3, Pages 4551â 4569). These routines include special color scales, projection functions, and bitmap handling routines.
This package provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
Evaluation of default probability of sovereign and corporate entities based on structural or intensity based models and calibration on market Credit Default Swap quotes. References: Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) <doi:10.1002/9781118818589>. Print ISBN: 9780470748466, Online ISBN: 9781118818589. © 2013 John Wiley & Sons Ltd.
This package provides a collection of tools to easily analyze clinical data, including functions for correlation analysis, and statistical testing. The package facilitates the integration of clinical metadata with other omics layers, enabling exploration of quantitative variables. It also includes the utility for frequency matching samples across a dataset based on patient variables.
This package implements a modern, unified estimation strategy for common mediation estimands (natural effects, organic effects, interventional effects, and recanting twins) in combination with modified treatment policies as described in Liu, Williams, Rudolph, and DÃ az (2024) <doi:10.48550/arXiv.2408.14620>. Estimation makes use of recent advancements in Riesz-learning to estimate a set of required nuisance parameters with deep learning. The result is the capability to estimate mediation effects with binary, categorical, continuous, or multivariate exposures with high-dimensional mediators and mediator-outcome confounders using machine learning.
Generates synthetic data distributions to enable testing various modelling techniques in ways that real data does not allow. Noise can be added in a controlled manner such that the data seems real. This methodology is generic and therefore benefits both the academic and industrial research.
This package provides a tidied subset of the US College Scorecard dataset, containing institutional characteristics, enrollment, student aid, costs, and student outcomes at institutions of higher education in the United States.
Responsive and modern HTML card essentials for shiny applications and dashboards. This novel card component in Bootstrap provides a flexible and extensible content container with multiple variants and options for building robust R based apps e.g for graph build or machine learning projects. The features rely on a combination of JQuery <https://jquery.com> and CSS styles to improve the card functionality.
Expectation-Maximization (EM) algorithm for point estimation and variance estimation to the nonparametric maximum likelihood estimator (NPMLE) for logistic-Cox cure-rate model with left truncation and right- censoring. See Hou, Chambers and Xu (2017) <doi:10.1007/s10985-017-9415-2>.
This package provides a standardized and reproducible framework for characterizing and classifying discrete color classes from digital images of biological organisms. The package automatically determines the presence or absence of 10 human-visible color categories (black, blue, brown, green, grey, orange, purple, red, white, yellow) using a biologically-inspired Color Look-Up Table (CLUT) that partitions HSV color space. Supports both fully automated and semi-automated (interactive) workflows with complete provenance tracking for reproducibility. Pre-processes images using the recolorize package (Weller et al. 2024 <doi:10.1111/ele.14378>) for spatial-color binning, and integrates with pavo (Maia et al. 2019 <doi:10.1111/2041-210X.13174>) for color pattern geometry statistics. Designed for high-throughput analysis and seamless integration with downstream evolutionary analyses.
This package implements a class of univariate and multivariate spatial generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation using a single or multiple Markov chains. The response variable can be binomial, Gaussian, multinomial, Poisson or zero-inflated Poisson (ZIP), and spatial autocorrelation is modelled by a set of random effects that are assigned a conditional autoregressive (CAR) prior distribution. A number of different models are available for univariate spatial data, including models with no random effects as well as random effects modelled by different types of CAR prior, including the BYM model (Besag et al., 1991, <doi:10.1007/BF00116466>) and Leroux model (Leroux et al., 2000, <doi:10.1007/978-1-4612-1284-3_4>). Additionally, a multivariate CAR (MCAR) model for multivariate spatial data is available, as is a two-level hierarchical model for modelling data relating to individuals within areas. Full details are given in the vignette accompanying this package. The initial creation of this package was supported by the Economic and Social Research Council (ESRC) grant RES-000-22-4256, and on-going development has been supported by the Engineering and Physical Science Research Council (EPSRC) grant EP/J017442/1, ESRC grant ES/K006460/1, Innovate UK / Natural Environment Research Council (NERC) grant NE/N007352/1 and the TB Alliance.
Enables creation of visualizations using the CanvasXpress framework in R. CanvasXpress is a standalone JavaScript library for reproducible research with complete tracking of data and end-user modifications stored in a single PNG image that can be played back. See <https://www.canvasxpress.org> for more information.
Sampling from the Cholesky factorization of a Wishart random variable, sampling from the inverse Wishart distribution, sampling from the Cholesky factorization of an inverse Wishart random variable, sampling from the pseudo Wishart distribution, sampling from the generalized inverse Wishart distribution, computing densities for the Wishart and inverse Wishart distributions, and computing the multivariate gamma and digamma functions. Provides a header file so the C functions can be called directly from other programs.
This package implements the count splitting methodology from Neufeld et al. (2022) <doi:10.1093/biostatistics/kxac047> and Neufeld et al. (2023) <arXiv:2307.12985>. Intended for turning a matrix of single-cell RNA sequencing counts, or similar count datasets, into independent folds that can be used for training/testing or cross validation. Assumes that the entries in the matrix are from a Poisson or a negative binomial distribution.
This package provides a wrapper for the U.S. Census Bureau APIs that returns data frames of Census data and metadata. Available datasets include the Decennial Census, American Community Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, Population Estimates and Projections, and more.
Optimization solver based on the Cross-Entropy method.
Calculates correlation of variables and displays the results graphically. Included panel functions can display points, shading, ellipses, and correlation values with confidence intervals. See Friendly (2002) <doi:10.1198/000313002533>.
Providing data to quickly visualize and analyze data from several cryptocurrencies.
Perform variable selection for Cox regression model with interval-censored data. Can deal with both low-dimensional and high-dimensional data. Case-cohort design can be incorporated. Two sets of covariates scenario can also be considered. The references are listed in the URL below.
Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.
This package provides a wrapper for the CDRC API that returns data frames or sf of CDRC data. The API web reference is:<https://api.cdrc.ac.uk/swagger/index.html>.
This package provides a set of functions to perform queries against the CCM API <https://mohcontacttracing.my.salesforce.com>.
Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology <doi:10.1093/ije/dyac078>. The optional ggtree package can be obtained through Bioconductor.
Different tools for describing and analysing paired comparison data are presented. Main methods are estimation of products scores according Bradley Terry Luce model. A segmentation of the individual could be conducted on the basis of a mixture distribution approach. The number of classes can be tested by the use of Monte Carlo simulations. This package deals also with multi-criteria paired comparison data.