Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Unified interface for the estimation of causal networks, including the methods backShift (from package backShift'), bivariateANM (bivariate additive noise model), bivariateCAM (bivariate causal additive model), CAM (causal additive model) (from package CAM'; the package is temporarily unavailable on the CRAN repository; formerly available versions can be obtained from the archive), hiddenICP (invariant causal prediction with hidden variables), ICP (invariant causal prediction) (from package InvariantCausalPrediction'), GES (greedy equivalence search), GIES (greedy interventional equivalence search), LINGAM', PC (PC Algorithm), FCI (fast causal inference), RFCI (really fast causal inference) (all from package pcalg') and regression.
This package provides a simple interface for multivariate correlation analysis that unifies various classical statistical procedures including t-tests, tests in univariate and multivariate linear models, parametric and nonparametric tests for correlation, Kruskal-Wallis tests, common approximate versions of Wilcoxon rank-sum and signed rank tests, chi-squared tests of independence, score tests of particular hypotheses in generalized linear models, canonical correlation analysis and linear discriminant analysis.
Randomization-Based Inference for customized experiments. Computes Fisher-Exact P-Values alongside null randomization distributions. Retrieves counternull sets and generates counternull distributions. Computes Fisher Intervals and Fisher-Adjusted P-Values. Package includes visualization of randomization distributions and Fisher Intervals. Users can input custom test statistics and their own methods for randomization. Rosenthal and Rubin (1994) <doi:10.1111/j.1467-9280.1994.tb00281.x>.
This package provides routines for the generation of response patterns under unidimensional dichotomous and polytomous computerized adaptive testing (CAT) framework. It holds many standard functions to estimate ability, select the first item(s) to administer and optimally select the next item, as well as several stopping rules. Options to control for item exposure and content balancing are also available (Magis and Barrada (2017) <doi:10.18637/jss.v076.c01>).
This package provides a tool that imports, subsets, visualizes, and exports the Correlates of State Policy Project dataset assembled by Marty P. Jordan and Matt Grossmann (2020) <http://ippsr.msu.edu/public-policy/correlates-state-policy>. The Correlates data contains over 2000 variables across more than 100 years that pertain to state politics and policy in the United States. Users with only a basic understanding of R can subset this data across multiple dimensions, export their search results, create map visualizations, export the citations associated with their searches, and more.
This package provides a function that facilitates fitting three types of models for contrast-based Bayesian Network Meta Analysis. The first model is that which is described in Lu and Ades (2006) <doi:10.1198/016214505000001302>. The other two models are based on a Bayesian nonparametric methods that permit ties when comparing treatment or for a treatment effect to be exactly equal to zero. In addition to the model fits, the package provides a summary of the interplay between treatment effects based on the procedure described in Barrientos, Page, and Lin (2023) <doi:10.48550/arXiv.2207.06561>.
The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The cmsafvis R-package provides a collection of R-operators for the analysis and visualization of CM SAF NetCDF data. CM SAF climate data records are provided for free via (<https://wui.cmsaf.eu/safira>). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>).
Estimation of 2-level factor copula-based regression models for clustered data where the response variable can be either discrete or continuous.
Computing elliptical joint confidence regions at a specified confidence level. It provides the flexibility to estimate either classical or robust confidence regions, which can be visualized in 2D or 3D plots. The classical approach assumes normality and uses the mean and covariance matrix to define the confidence regions. Alternatively, the robustified version employs estimators like minimum covariance determinant (MCD) and M-estimator, making them less sensitive to outliers and departures from normality. Furthermore, the functions allow users to group the dataset based on categorical variables and estimate separate confidence regions for each group. This capability is particularly useful for exploring potential differences or similarities across subgroups within a dataset. Varmuza and Filzmoser (2009, ISBN:978-1-4200-5947-2). Johnson and Wichern (2007, ISBN:0-13-187715-1). Raymaekers and Rousseeuw (2019) <DOI:10.1080/00401706.2019.1677270>.
This package performs simple correspondence analysis on a two-way contingency table, or multiple correspondence analysis (homogeneity analysis) on data with p categorical variables, and produces bootstrap-based elliptical confidence regions around the projected coordinates for the category points. Includes routines to plot the results in a variety of styles. Also reports the standard numerical output for correspondence analysis.
In statistical modeling, multiple models need to be compared based on certain criteria. The method described here uses eight metrics from AllMetrics package. â input_dfâ is the data frame (at least two columns for comparison) containing metrics values in different rows of a column (which denotes a particular modelâ s performance). First five metrics are expected to be minimum and last three metrics are expected to be maximum for a model to be considered good. Firstly, every metric value (among first five) is searched in every columns and minimum values are denoted as â MINâ and other values are denoted as â NAâ . Secondly, every metric (among last three) is searched in every columns and maximum values are denoted as â MAXâ and other values are denoted as â NAâ . â output_dfâ contains the similar number of rows (which is 8) and columns (which is number of models to be compared) as of â input_dfâ . Values in â output_dfâ are corresponding â NAâ , â MINâ or â MAXâ . Finally, the column containing minimum number of â NAâ values is denoted as the best column. â min_NA_colâ gives the name of the best column (model). â min_NA_valuesâ are the corresponding metrics values. âBestColumn_metricsâ is the data frame (dimension: 1*8) containing different metrics of the best column (model). â best_column_resultsâ is the final result (a list) containing all of these output elements. In special case, if two columns having equal NA', it will be checked among these two column which one is having least NA in first five rows and will be inferred as the best. More details about AllMetrics can be found in Garai (2023) <doi:10.13140/RG.2.2.18688.30723>.
The level-dependent cross-validation method is implemented for the selection of thresholding value in wavelet shrinkage. This procedure is implemented by coupling a conventional cross validation with an imputation method due to a limitation of data length, a power of 2. It can be easily applied to classical leave-one-out and k-fold cross validation. Since the procedure is computationally fast, a level-dependent cross validation can be performed for wavelet shrinkage of various data such as a data with correlated errors.
The Clinical Trials Network (CTN) of the U.S. National Institute of Drug Abuse sponsored the CTN-0094 research team to harmonize data sets from three nationally-representative clinical trials for opioid use disorder (OUD). The CTN-0094 team herein provides a coded collection of trial outcomes and endpoints used in various OUD clinical trials over the past 50 years. These coded outcome functions are used to contrast and cluster different clinical outcome functions based on daily or weekly patient urine screenings. Note that we abbreviate urine drug screen as "UDS" and urine opioid screen as "UOS". For the example data sets (based on clinical trials data harmonized by the CTN-0094 research team), UDS and UOS are largely interchangeable.
Record and generate a gif of your R sessions plots. When creating a visualization, there is inevitably iteration and refinement that occurs. Automatically save the plots made to a specified directory, previewing them as they would be saved. Then combine all plots generated into a gif to show the plot refinement over time.
Estimation, testing and regression modeling of subdistribution functions in competing risks using quantile regressions, as described in Peng and Fine (2009) <DOI:10.1198/jasa.2009.tm08228>.
Convert BCD (raw bytes) to decimal numbers and vice versa. BCD format is used to preserve decimals exactly, as opposed to the binary rounding errors inherent in "numeric" or "floating-point" formats.
Draws causal hypergraph plots from models output by configurational comparative methods such as Coincidence Analysis (CNA) or Qualitative Comparative Analysis (QCA).
This package provides tools for calculating coordinate representations of hypocycloids, epicyloids, hypotrochoids, and epitrochoids (altogether called cycloids here) with different scaling and positioning options. The cycloids can be visualised with any appropriate graphics function in R.
This package provides a wrapper for the CDRC API that returns data frames or sf of CDRC data. The API web reference is:<https://api.cdrc.ac.uk/swagger/index.html>.
This package implements the regression approach of Zuber and Strimmer (2011) "High-dimensional regression and variable selection using CAR scores" SAGMB 10: 34, <DOI:10.2202/1544-6115.1730>. CAR scores measure the correlation between the response and the Mahalanobis-decorrelated predictors. The squared CAR score is a natural measure of variable importance and provides a canonical ordering of variables. This package provides functions for estimating CAR scores, for variable selection using CAR scores, and for estimating corresponding regression coefficients. Both shrinkage as well as empirical estimators are available.
This package provides the official administrative boundaries of the Azores (Região Autónoma dos Açores (RAA)) as defined in the 2024 edition of the Carta Administrativa Oficial de Portugal (CAOP), published by the Direção-Geral do Território (DGT). The package includes convenience functions to import these boundaries as sf objects for spatial analysis in R. Source: <https://geo2.dgterritorio.gov.pt/caop/CAOP_RAA_2024-gpkg.zip>.
The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). chillR contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. chillR also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, chillR contains a function for interpolating hourly temperature records.
This package provides a comprehensive and automated workflow for managing multicollinearity in data frames with numeric and/or categorical variables. The package integrates five robust methods into a single function: (1) target encoding of categorical variables based on response values (Micci-Barreca, 2001 (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); (2) automated feature prioritization to preserve key predictors during filtering; (3 and 4) pairwise correlation and VIF filtering across all variable types (numericâ numeric, numericâ categorical, and categoricalâ categorical); (5) adaptive correlation and VIF thresholds. Together, these methods enable a reliable multicollinearity management in most use cases while maintaining model integrity. The package also supports parallel processing and progress tracking via the packages future and progressr', and provides seamless integration with the tidymodels ecosystem through a dedicated recipe step.
Single objective optimization using a CMA-ES.