Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create a pie like plot to visualise if the aim or several aims of a project is achieved or close to be achieved i.e the aim is achieved when the point is at the center of the pie plot. Imagine it's like a dartboard and the center means 100% completeness/achievement. Achievement can also be understood as 100% coverage. The standard distribution of completeness allocated in the pie plot is 50%, 80% and 100% completeness.
Choice models are a widely used technique across numerous scientific disciplines. The Apollo package is a very flexible tool for the estimation and application of choice models in R. Users are able to write their own model functions or use a mix of already available ones. Random heterogeneity, both continuous and discrete and at the level of individuals and choices, can be incorporated for all models. There is support for both standalone models and hybrid model structures. Both classical and Bayesian estimation is available, and multiple discrete continuous models are covered in addition to discrete choice. Multi-threading processing is supported for estimation and a large number of pre and post-estimation routines, including for computing posterior (individual-level) distributions are available. For examples, a manual, and a support forum, visit <https://www.ApolloChoiceModelling.com>. For more information on choice models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess, S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview of the field.
Extraction, preparation, visualisation and analysis of TERN AusPlots ecosystem monitoring data. Direct access to plot-based data on vegetation and soils across Australia, including physical sample barcode numbers. Simple function calls extract the data and merge them into species occurrence matrices for downstream analysis, or calculate things like basal area and fractional cover. TERN AusPlots is a national field plot-based ecosystem surveillance monitoring method and dataset for Australia. The data have been collected across a national network of plots and transects by the Terrestrial Ecosystem Research Network (TERN - <https://www.tern.org.au>), an Australian Government NCRIS-enabled project, and its Ecosystem Surveillance platform (<https://www.tern.org.au/tern-land-observatory/ecosystem-surveillance-and-environmental-monitoring/>).
This package performs AnchorRegression proposed by Rothenhäusler et al. 2020. The code is adapted from the original paper repository. (<https://github.com/rothenhaeusler/anchor-regression>) The code was developed independently from the authors of the paper.
For researchers to quickly and comprehensively acquire disease genes, so as to understand the mechanism of disease, we developed this program to acquire disease-related genes. The data is integrated from three public databases. The three databases are eDGAR', DrugBank and MalaCards'. The eDGAR is a comprehensive database, containing data on the relationship between disease and genes. DrugBank contains information on 13443 drugs and 5157 targets. MalaCards integrates human disease information, including disease-related genes.
Browse through a continuously updated list of existing RStudio addins and install/uninstall their corresponding packages.
We propose an age-dependent topic modelling (ATM) model, providing a low-rank representation of longitudinal records of hundreds of distinct diseases in large electronic health record data sets. The model assigns to each individual topic weights for several disease topics; each disease topic reflects a set of diseases that tend to co-occur as a function of age, quantified by age-dependent topic loadings for each disease. The model assumes that for each disease diagnosis, a topic is sampled based on the individualâ s topic weights (which sum to 1 across topics, for a given individual), and a disease is sampled based on the individualâ s age and the age-dependent topic loadings (which sum to 1 across diseases, for a given topic at a given age). The model generalises the Latent Dirichlet Allocation (LDA) model by allowing topic loadings for each topic to vary with age. References: Jiang (2023) <doi:10.1038/s41588-023-01522-8>.
Adaptive smoothing functions for estimating the blood oxygenation level dependent (BOLD) effect by using functional Magnetic Resonance Imaging (fMRI) data, based on adaptive Gauss Markov random fields, for real as well as simulated data. The implemented models make use of efficient Markov Chain Monte Carlo methods. Implemented methods are based on the research developed by A. Brezger, L. Fahrmeir, A. Hennerfeind (2007) <https://www.jstor.org/stable/4626770>.
Convert populations into integer number of seats for legislative bodies. Implements apportionment methods used historically and currently in the United States for reapportionment after the Census, as described in <https://www.census.gov/history/www/reference/apportionment/methods_of_apportionment.html>.
The adapted pair correlation function transfers the concept of the pair correlation function from point patterns to patterns of objects of finite size and irregular shape (e.g. lakes within a country). The pair correlation function describes the spatial distribution of objects, e.g. random, aggregated or regularly spaced. This is a reimplementation of the method suggested by Nuske et al. (2009) <doi:10.1016/j.foreco.2009.09.050> using the library GEOS <doi:10.5281/zenodo.11396894>.
This package implements persistent row and column annotations for R matrices. The annotations associated with rows and columns are preserved after subsetting, transposition, and various other matrix-specific operations. Intended use case is for storing and manipulating genomic datasets which typically consist of a matrix of measurements (like gene expression values) as well as annotations about rows (i.e. genomic locations) and annotations about columns (i.e. meta-data about collected samples). But annmatrix objects are also expected to be useful in various other contexts.
This package provides a collection of tools for the analysis of habitat selection.
This package implements a Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler was adapted from the original MATLAB routine proposed in Wang (2012) <doi:10.1214/12-BA729>.
This package implements adaptive gPCA, as described in: Fukuyama, J. (2017) <arXiv:1702.00501>. The package also includes functionality for applying the method to phyloseq objects so that the method can be easily applied to microbiome data and a shiny app for interactive visualization.
This package provides a simple method to improve the accessibility of rmarkdown documents. The package provides functions for creating or modifying rmarkdown documents, resolving known errors and alerts that result in accessibility issues for screen reader users.
Build and control interactive 2D and 3D maps with R/Shiny'. Lean set of powerful commands wrapping native calls to AMap <https://lbs.amap.com/api/jsapi-v2/summary/>. Deliver rich mapping functionality with minimal overhead.
This package provides a web framework inspired by express.js to build any web service from multi-page websites to RESTful application programming interfaces.
Interactive R tutorials written using learnr for Field (2016), "An Adventure in Statistics", <ISBN:9781446210451>. Topics include general workflow in R and Rstudio', the R environment and tidyverse', summarizing data, model fitting, central tendency, visualising data using ggplot2', inferential statistics and robust estimation, hypothesis testing, the general linear model, comparing means, repeated measures designs, factorial designs, multilevel models, growth models, and generalized linear models (logistic regression).
Accelerated destructive degradation tests (ADDT) are often used to collect necessary data for assessing the long-term properties of polymeric materials. Based on the collected data, a thermal index (TI) is estimated. The TI can be useful for material rating and comparison. This package implements the traditional method based on the least-squares method, the parametric method based on maximum likelihood estimation, and the semiparametric method based on spline methods, and the corresponding methods for estimating TI for polymeric materials. The traditional approach is a two-step approach that is currently used in industrial standards, while the parametric method is widely used in the statistical literature. The semiparametric method is newly developed. Both the parametric and semiparametric approaches allow one to do statistical inference such as quantifying uncertainties in estimation, hypothesis testing, and predictions. Publicly available datasets are provided illustrations. More details can be found in Jin et al. (2017).
This package provides tools for the identification of unique of multilocus genotypes when both genotyping error and missing data may be present; targeted for use with large datasets and databases containing multiple samples of each individual (a common situation in conservation genetics, particularly in non-invasive wildlife sampling applications). Functions explicitly incorporate missing data and can tolerate allele mismatches created by genotyping error. If you use this package, please cite the original publication in Molecular Ecology Resources (Galpern et al., 2012), the details for which can be generated using citation('allelematch'). For a complete vignette, please access via the Data S1 Supplementary documentation and tutorials (PDF) located at <doi:10.1111/j.1755-0998.2012.03137.x>.
The empirical cumulative average deviation function introduced by the author is utilized to develop both Ad- and Ud-plots. The Ad-plot can identify symmetry, skewness, and outliers of the data distribution, including anomalies. The Ud-plot created by slightly modifying Ad-plot is exceptional in assessing normality, outperforming normal QQ-plot, normal PP-plot, and their derivations. The d-value that quantifies the degree of proximity between the Ud-plot and the graph of the estimated normal density function helps guide to make decisions on confirmation of normality. Full description of this methodology can be found in the article by Wijesuriya (2025) <doi:10.1080/03610926.2024.2440583>.
Uses Auth0 API (see <https://auth0.com> for more information) to use a simple authentication system. It provides tools to log in and out a shiny application using social networks or a list of e-mails.
This is an implementation of the Generalized Discrimination Score (also known as Two Alternatives Forced Choice Score, 2AFC) for various representations of forecasts and verifying observations. The Generalized Discrimination Score is a generic forecast verification framework which can be applied to any of the following verification contexts: dichotomous, polychotomous (ordinal and nominal), continuous, probabilistic, and ensemble. A comprehensive description of the Generalized Discrimination Score, including all equations used in this package, is provided by Mason and Weigel (2009) <doi:10.1175/MWR-D-10-05069.1>.
Datasets from books, papers, and websites related to agriculture. Example graphics and analyses are included. Data come from small-plot trials, multi-environment trials, uniformity trials, yield monitors, and more.