Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create an addin in Rstudio to do fill-in-the-middle (FIM) and chat with latest Mistral AI models for coding, Codestral and Codestral Mamba'. For more details about Mistral AI API': <https://docs.mistral.ai/getting-started/quickstart/> and <https://docs.mistral.ai/api/>. For more details about Codestral model: <https://mistral.ai/news/codestral>; about Codestral Mamba': <https://mistral.ai/news/codestral-mamba>.
Computes the uniform rate of profit, the vector of price of production and the vector of labor values; and also compute measures of deviation between relative prices of production and relative values. <https://scholarworks.umass.edu/econ_workingpaper/347/>. You provide the input-output data and clptheory does the calculations for you.
This package implements the count splitting methodology from Neufeld et al. (2022) <doi:10.1093/biostatistics/kxac047> and Neufeld et al. (2023) <arXiv:2307.12985>. Intended for turning a matrix of single-cell RNA sequencing counts, or similar count datasets, into independent folds that can be used for training/testing or cross validation. Assumes that the entries in the matrix are from a Poisson or a negative binomial distribution.
Estimation of optimal portfolio weights as combination of simple portfolio strategies, like the tangency, global minimum variance (GMV) or naive (1/N) portfolio. It is based on a utility maximizing 8-fund rule. Popular special cases like the Kan-Zhou(2007) 2-fund and 3-fund rule or the Tu-Zhou(2011) estimator are nested.
Automated method for doublet detection in flow or mass cytometry data, based on simulating doublets and finding events whose protein expression patterns are similar to the simulated doublets.
This package provides a generic sleepâ wake cycle detection algorithm for analyzing unlabeled actigraphy data. The algorithm has been validated against event markers using data from the Multi-Ethnic Study of Atherosclerosis (MESA) Sleep study, and its methodological details are described in Chen and Sun (2024) <doi:10.1098/rsos.231468>. The package provides functions to estimate sleep metrics (e.g., sleep and wake onset times) and circadian rhythm metrics (e.g., mesor, phasor, interdaily stability, intradaily variability), as well as tools for screening actigraphy quality, fitting cosinor models, and performing parametric change point detection. The workflow can also be used to segment long actigraphy sequences into regularized structures for physical activity research.
The CloudOS client library for R makes it easy to interact with CloudOS in the R environment for analysis.
This package provides methods to deal with under sampling in ecological bipartite networks from Terry and Lewis (2020) Ecology <doi:10.1002/ecy.3047> Includes tools to fit a variety of statistical network models and sample coverage estimators to highlight most likely missing links. Also includes simple functions to resample from observed networks to generate confidence intervals for common ecological network metrics.
Create CUSUM (cumulative sum) statistics from a vector or dataframe. Also create single or faceted CUSUM control charts, with or without control limits. Accepts vector, dataframe, tibble or data.table inputs.
We propose a consistent monitoring procedure to detect a structural change from a cointegrating relationship to a spurious relationship. The procedure is based on residuals from modified least squares estimation, using either Fully Modified, Dynamic or Integrated Modified OLS. It is inspired by Chu et al. (1996) <DOI:10.2307/2171955> in that it is based on parameter estimation on a pre-break "calibration" period only, rather than being based on sequential estimation over the full sample. See the discussion paper <DOI:10.2139/ssrn.2624657> for further information. This package provides the monitoring procedures for both the cointegration and the stationarity case (while the latter is just a special case of the former one) as well as printing and plotting methods for a clear presentation of the results.
The nonparametric methods for estimating copula entropy, transfer entropy, and the statistics for multivariate normality test and two-sample test are implemented. The methods for estimating transfer entropy and the statistics for multivariate normality test and two-sample test are based on the method for estimating copula entropy. The method for change point detection with copula entropy based two-sample test is also implemented. Please refer to Ma and Sun (2011) <doi:10.1016/S1007-0214(11)70008-6>, Ma (2019) <doi:10.48550/arXiv.1910.04375>, Ma (2022) <doi:10.48550/arXiv.2206.05956>, Ma (2023) <doi:10.48550/arXiv.2307.07247>, and Ma (2024) <doi:10.48550/arXiv.2403.07892> for more information.
Implementation of estimators for inferring the mean of censored cost data. Including the estimators BT from Bang and Tsiatis (2000) <doi:10.1093/biomet/87.2.329> and ZT from Zhao and Tian (2001) <doi:10.1111/j.0006-341X.2001.01002.x>.
Doubly robust methods for evaluating surrogate markers as outlined in: Agniel D, Hejblum BP, Thiebaut R & Parast L (2022). "Doubly robust evaluation of high-dimensional surrogate markers", Biostatistics <doi:10.1093/biostatistics/kxac020>. You can use these methods to determine how much of the overall treatment effect is explained by a (possibly high-dimensional) set of surrogate markers.
An implementation of methods for causal discovery in a structural causal model where the conditional distribution of the target node is described by a generalized linear model conditional on its causal parents.
It provides functions to bootstrap Credit Curves from market quotes (Credit Default Swap - CDS - spreads) and price Credit Default Swaps - CDS.
This package provides a tool for exploring correlations. It makes it possible to easily perform routine tasks when exploring correlation matrices such as ignoring the diagonal, focusing on the correlations of certain variables against others, or rearranging and visualizing the matrix in terms of the strength of the correlations.
The COVID Symptom Study is a non-commercial project that uses a free mobile app to facilitate real-time data collection of symptoms, exposures, and risk factors related to COVID19. The package allows easy access to summary statistics data from COVID Symptom Study Sweden.
Extends the functionality of base R lists and provides specialized data structures deque', set', dict', and dict.table', the latter to extend the data.table package.
Create self-contained SVG information cards with embedded Google Fonts', shields-style badges, and custom logos. Cards are fully portable SVG files ideal for dashboards, reports, and web applications. Includes functions to export cards to PNG format and display them in R Markdown and Quarto documents.
Detection of change-points for variance of heteroscedastic Gaussian variables with piecewise constant variance function. Adelfio, G. (2012), Change-point detection for variance piecewise constant models, Communications in Statistics, Simulation and Computation, 41:4, 437-448, <doi:10.1080/03610918.2011.592248>.
Extends the Cox model to events with more than one causes. Also supports random and fixed effects, tied events, and time-varying variables. Model details are provided in Peng et al. (2018) <doi:10.1509/jmr.14.0643>.
This package contains tools for working with data during statistical analysis, promoting flexible, intuitive, and reproducible workflows. There are functions designated for specific statistical tasks such building a custom univariate descriptive table, computing pairwise association statistics, etc. These are built on a collection of data manipulation tools designed for general use that are motivated by the functional programming concept.
Datasets for the book entitled "Modelling Survival Data in Medical Research" by Collett (2023) <doi:10.1201/9781003282525>. The datasets provide extensive examples of time-to-event data.
Quantify and visualise various measures of chemical diversity and dissimilarity, for phytochemical compounds and other sets of chemical composition data. Importantly, these measures can incorporate biosynthetic and/or structural properties of the chemical compounds, resulting in a more comprehensive quantification of diversity and dissimilarity. For details, see Petrén, Köllner and Junker (2023) <doi:10.1111/nph.18685>.