Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The goal is to print an "aperçu", a short view of a vector, a matrix, a data.frame, a list or an array. By default, it prints the first 5 elements of each dimension. By default, the number of columns is equal to the number of lines. If you want to control the selection of the elements, you can pass a list, with each element being a vector giving the selection for each dimension.
An R Shiny application for visual and statistical exploration and web communication of archaeological spatial data, either remains or sites. It offers interactive 3D and 2D visualisations (cross sections and maps of remains, timeline of the work made in a site) which can be exported in SVG and HTML formats. It performs simple spatial statistics (convex hull, regression surfaces, 2D kernel density estimation) and allows exporting data to other online applications for more complex methods. archeoViz can be used offline locally or deployed on a server, either with interactive input of data or with a static data set. Example is provided at <https://analytics.huma-num.fr/archeoviz/en>.
Simulate an angler population, sample the simulated population with a user-specified survey times, and calculate metrics from a bus route-type creel survey.
This package provides simple and intuitive functions for basic statistical analyses. Methods include the t-test (Student 1908 <doi:10.1093/biomet/6.1.1>), the Mann-Whitney U test (Mann and Whitney 1947 <doi:10.1214/aoms/1177730491>), Pearson's correlation (Pearson 1895 <doi:10.1098/rspl.1895.0041>), and analysis of variance (Fisher 1925, <doi:10.1007/978-1-4612-4380-9_5>). Functions are compatible with ggplot2 and dplyr'.
This package provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) <doi:10.1093/jrsssa/qnad010> and Ben-Michael, Greiner, Huang, Imai, Jiang, and Shin (2024) <doi:10.48550/arXiv.2403.12108>. The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.
Continuous and discrete (count or categorical) estimation of density, probability mass function (p.m.f.) and regression functions are performed using associated kernels. The cross-validation technique and the local Bayesian procedure are also implemented for bandwidth selection.
Simulation and estimation tools for various types of ambit processes, including trawl processes and weighted trawl processes.
Existing adaptive design methods in clinical trials. The package includes power, stopping boundaries (sample size) calculation functions for two-group group sequential designs, adaptive design with coprimary endpoints, biomarker-informed adaptive design, etc.
Original idea was presented in the thesis "A statistical analysis tool for agricultural research" to obtain the degree of Master on science, National Engineering University (UNI), Lima-Peru. Some experimental data for the examples come from the CIP and others research. Agricolae offers extensive functionality on experimental design especially for agricultural and plant breeding experiments, which can also be useful for other purposes. It supports planning of lattice, Alpha, Cyclic, Complete Block, Latin Square, Graeco-Latin Squares, augmented block, factorial, split and strip plot designs. There are also various analysis facilities for experimental data, e.g. treatment comparison procedures and several non-parametric tests comparison, biodiversity indexes and consensus cluster.
This package provides functions for Arps decline-curve analysis on oil and gas data. Includes exponential, hyperbolic, harmonic, and hyperbolic-to-exponential models as well as the preceding with initial curtailment or a period of linear rate buildup. Functions included for computing rate, cumulative production, instantaneous decline, EUR, time to economic limit, and performing least-squares best fits.
Bindings to FFmpeg <http://www.ffmpeg.org/> AV library for working with audio and video in R. Generates high quality video from images or R graphics with custom audio. Also offers high performance tools for reading raw audio, creating spectrograms', and converting between countless audio / video formats. This package interfaces directly to the C API and does not require any command line utilities.
This package provides a method for automatic detection of peaks in noisy periodic and quasi-periodic signals. This method, called automatic multiscale-based peak detection (AMPD), is based on the calculation and analysis of the local maxima scalogram, a matrix comprising the scale-dependent occurrences of local maxima. For further information see <doi:10.3390/a5040588>.
This package provides cross-validation tools for adsorption isotherm models, supporting both linear and non-linear forms. Current methods cover commonly used isotherms including the Freundlich, Langmuir, and Temkin models. This package implements K-fold and leave-one-out cross-validation (LOOCV) with optional clustering-based fold assignment to preserve underlying data structures during validation. Model predictive performance is assessed using mean squared error (MSE), with optional graphical visualization of fold-wise MSEs to support intuitive evaluation of model accuracy. This package is intended to facilitate rigorous model validation in adsorption studies and aid researchers in selecting robust isotherm models. For more details, see Montgomery et al. (2012) <isbn: 978-0-470-54281-1>, Lumumba et al. (2024) <doi:10.11648/j.ajtas.20241305.13>, and Yates et al. (2022) <doi:10.1002/ecm.1557>.
This package creates complex autoregressive distributed lag (ARDL) models and constructs the underlying unrestricted and restricted error correction model (ECM) automatically, just by providing the order. It also performs the bounds-test for cointegration as described in Pesaran et al. (2001) <doi:10.1002/jae.616> and provides the multipliers and the cointegrating equation. The validity and the accuracy of this package have been verified by successfully replicating the results of Pesaran et al. (2001) in Natsiopoulos and Tzeremes (2022) <doi:10.1002/jae.2919>.
This package provides functions to conduct title and abstract screening in systematic reviews using large language models, such as the Generative Pre-trained Transformer (GPT) models from OpenAI <https://platform.openai.com/>. These functions can enhance the quality of title and abstract screenings while reducing the total screening time significantly. In addition, the package includes tools for quality assessment of title and abstract screenings, as described in Vembye, Christensen, Mølgaard, and Schytt (2025) <DOI:10.1037/met0000769>.
Developed to perform the tasks given by the following. 1-computing the probability density function and distribution function of a univariate stable distribution; 2- generating from univariate stable, truncated stable, multivariate elliptically contoured stable, and bivariate strictly stable distributions; 3- estimating the parameters of univariate symmetric stable, skew stable, Cauchy, multivariate elliptically contoured stable, and multivariate strictly stable distributions; 4- estimating the parameters of the mixture of symmetric stable and mixture of Cauchy distributions.
Coerce R object to asciidoc', txt2tags', restructuredText', org', textile or pandoc syntax. Package comes with a set of drivers for Sweave'.
This package provides functions to fit Accurate Generalized Linear Model (AGLM) models, visualize them, and predict for new data. AGLM is defined as a regularized GLM which applies a sort of feature transformations using a discretization of numerical features and specific coding methodologies of dummy variables. For more information on AGLM, see Suguru Fujita, Toyoto Tanaka, Kenji Kondo and Hirokazu Iwasawa (2020) <https://www.institutdesactuaires.com/global/gene/link.php?doc_id=16273&fg=1>.
This software solves an Advection Bi-Flux Diffusive Problem using the Finite Difference Method FDM. Vasconcellos, J.F.V., Marinho, G.M., Zanni, J.H., 2016, Numerical analysis of an anomalous diffusion with a bimodal flux distribution. <doi:10.1016/j.rimni.2016.05.001>. Silva, L.G., Knupp, D.C., Bevilacqua, L., Galeao, A.C.N.R., Silva Neto, A.J., 2014, Formulation and solution of an Inverse Anomalous Diffusion Problem with Stochastic Techniques. <doi:10.5902/2179460X13184>. In this version, it is possible to include a source as a function depending on space and time, that is, s(x,t).
Developed for Computing the probability density function, cumulative distribution function, random generation, estimating the parameters of asymmetric exponential power distribution, and robust regression analysis with error term that follows asymmetric exponential power distribution. The asymmetric exponential power distribution studied here is a special case of that introduced by Dongming and Zinde-Walsh (2009) <doi:10.1016/j.jeconom.2008.09.038>.
Parse R code in a given directory for R packages and attempt to install them from CRAN or GitHub. Optionally use a dependencies file for tighter control over which package versions to install.
Estimate and plot confounder-adjusted survival curves using either Direct Adjustment', Direct Adjustment with Pseudo-Values', various forms of Inverse Probability of Treatment Weighting', two forms of Augmented Inverse Probability of Treatment Weighting', Empirical Likelihood Estimation or Targeted Maximum Likelihood Estimation'. Also includes a significance test for the difference between two adjusted survival curves and the calculation of adjusted restricted mean survival times. Additionally enables the user to estimate and plot cause-specific confounder-adjusted cumulative incidence functions in the competing risks setting using the same methods (with some exceptions). For details, see Denz et. al (2023) <doi:10.1002/sim.9681>.
An interface to the ArcGIS arcpy and arcgis python API <https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/arcgis-api-for-python.htm>. Provides various tools for installing and configuring a Conda environment for accessing ArcGIS geoprocessing functions. Helper functions for manipulating and converting ArcGIS objects from R are also provided.
Estimate age-depth models from stratigraphic and sedimentological data, and transform data between the time and stratigraphic domain.