Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Government Analysis Function recommended colours for use in charts on gov.uk to help meet accessibility guidance.
This package provides simple assertions with sensible defaults and customisable error messages. It offers convenient assertion call wrappers and a general assert function that can handle any condition. Default error messages are user friendly and easily customized with inline code evaluation and styling powered by the cli package.
This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
This package provides different functionalities and calculations used in the world of basketball to analyze the statistics of the players, the statistics of the teams, the statistics of the quintets and the statistics of the plays. For more details of the calculations included in the package can be found in the book Basketball on Paper written by Dean Oliver.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
This package provides functions to efficiently query ArcGIS REST APIs <https://developers.arcgis.com/rest/>. Both spatial and SQL queries can be used to retrieve data. Simple Feature (sf) objects are utilized to perform spatial queries. This package was neither produced nor is maintained by Esri.
This package provides a chat package connecting to API endpoints by OpenAI (<https://platform.openai.com/>) to answer questions (about R).
Provides: (1) Tools to infer dominance hierarchies based on calculating Elo scores, but with custom functions to improve estimates in animals with relatively stable dominance ranks. (2) Tools to plot the shape of the dominance hierarchy and estimate the uncertainty of a given data set.
Build and control interactive 2D and 3D maps with R/Shiny'. Lean set of powerful commands wrapping native calls to AMap <https://lbs.amap.com/api/jsapi-v2/summary/>. Deliver rich mapping functionality with minimal overhead.
This package creates interactive Venn diagrams using the amCharts5 library for JavaScript'. They can be used directly from the R console, from RStudio', in shiny applications, and in rmarkdown documents.
Implementation of the technique of Lleonart et al. (2000) <doi:10.1006/jtbi.2000.2043> to scale body measurements that exhibit an allometric growth. This procedure is a theoretical generalization of the technique used by Thorpe (1975) <doi:10.1111/j.1095-8312.1975.tb00732.x> and Thorpe (1976) <doi:10.1111/j.1469-185X.1976.tb01063.x>.
An interactive document on the topic of one-way and two-way analysis of variance using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/ANOVAShiny/>.
This package provides a routine to partial out factors with many levels during the optimization of the log-likelihood function of the corresponding generalized linear model (glm). The package is based on the algorithm described in Stammann (2018) <doi:10.48550/arXiv.1707.01815> and is restricted to glm's that are based on maximum likelihood estimation and nonlinear. It also offers an efficient algorithm to recover estimates of the fixed effects in a post-estimation routine and includes robust and multi-way clustered standard errors. Further the package provides analytical bias corrections for binary choice models derived by Fernandez-Val and Weidner (2016) <doi:10.1016/j.jeconom.2015.12.014> and Hinz, Stammann, and Wanner (2020) <doi:10.48550/arXiv.2004.12655>.
Manage dependencies during package development. This can retrieve all dependencies that are used in ".R" files in the "R/" directory, in ".Rmd" files in "vignettes/" directory and in roxygen2 documentation of functions. There is a function to update the "DESCRIPTION" file of your package with CRAN packages or any other remote package. All functions to retrieve dependencies of ".R" scripts and ".Rmd" or ".qmd" files can be used independently of a package development.
This package provides functions and examples for the weak and strong density asymmetry measures in the articles: "A measure of asymmetry", Patil, Patil and Bagkavos (2012) <doi:10.1007/s00362-011-0401-6> and "A measure of asymmetry based on a new necessary and sufficient condition for symmetry", Patil, Bagkavos and Wood (2014) <doi:10.1007/s13171-013-0034-z>. The measures provided here are useful for quantifying the asymmetry of the shape of a density of a random variable. The package facilitates implementation of the measures which are applicable in a variety of fields including e.g. probability theory, statistics and economics.
This package provides the conditional Nelson-Aalen and Aalen-Johansen estimators. The methods are based on Bladt & Furrer (2023), in preparation.
Accumulated Local Effects (ALE) were initially developed as a model-agnostic approach for global explanations of the results of black-box machine learning algorithms. ALE has a key advantage over other approaches like partial dependency plots (PDP) and SHapley Additive exPlanations (SHAP): its values represent a clean functional decomposition of the model. As such, ALE values are not affected by the presence or absence of interactions among variables in a mode. Moreover, its computation is relatively rapid. This package reimplements the algorithms for calculating ALE data and develops highly interpretable visualizations for plotting these ALE values. It also extends the original ALE concept to add bootstrap-based confidence intervals and ALE-based statistics that can be used for statistical inference. For more details, see Okoli, Chitu. 2023. â Statistical Inference Using Machine Learning and Classical Techniques Based on Accumulated Local Effects (ALE).â arXiv. <doi:10.48550/arXiv.2310.09877>.
For instructions, check <https://github.com/Hzhang-ouce/ARTofR>. This is a wrapper of bannerCommenter', for inserting neat comments, headers and dividers.
This package provides a tool that improves the prediction performance of multilevel regression with post-stratification (MrP) by combining a number of machine learning methods. For information on the method, please refer to Broniecki, Wüest, Leemann (2020) Improving Multilevel Regression with Post-Stratification Through Machine Learning (autoMrP) in the Journal of Politics'. Final pre-print version: <https://lucasleemann.files.wordpress.com/2020/07/automrp-r2pa.pdf>.
Perform the Adaptable Regularized Hotelling's T^2 test (ARHT) proposed by Li et al., (2016) <arXiv:1609.08725>. Both one-sample and two-sample mean test are available with various probabilistic alternative prior models. It contains a function to consistently estimate higher order moments of the population covariance spectral distribution using the spectral of the sample covariance matrix (Bai et al. (2010) <doi:10.1111/j.1467-842X.2010.00590.x>). In addition, it contains a function to sample from 3-variate chi-squared random vectors approximately with a given correlation matrix when the degrees of freedom are large.
We provide tools to estimate two prediction accuracy metrics, the average positive predictive values (AP) as well as the well-known AUC (the area under the receiver operator characteristic curve) for risk scores. The outcome of interest is either binary or censored event time. Note that for censored event time, our functions estimates, the AP and the AUC, are time-dependent for pre-specified time interval(s). A function that compares the APs of two risk scores/markers is also included. Optional outputs include positive predictive values and true positive fractions at the specified marker cut-off values, and a plot of the time-dependent AP versus time (available for event time data).
Adversarial random forests (ARFs) recursively partition data into fully factorized leaves, where features are jointly independent. The procedure is iterative, with alternating rounds of generation and discrimination. Data becomes increasingly realistic at each round, until original and synthetic samples can no longer be reliably distinguished. This is useful for several unsupervised learning tasks, such as density estimation and data synthesis. Methods for both are implemented in this package. ARFs naturally handle unstructured data with mixed continuous and categorical covariates. They inherit many of the benefits of random forests, including speed, flexibility, and solid performance with default parameters. For details, see Watson et al. (2023) <https://proceedings.mlr.press/v206/watson23a.html>.
Statistical procedures to perform stability analysis in plant breeding and to identify stable genotypes under diverse environments. It is possible to calculate coefficient of homeostaticity by Khangildin et al. (1979), variance of specific adaptive ability by Kilchevsky&Khotyleva (1989), weighted homeostaticity index by Martynov (1990), steadiness of stability index by Udachin (1990), superiority measure by Lin&Binn (1988) <doi:10.4141/cjps88-018>, regression on environmental index by Erberhart&Rassel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, Tai's (1971) stability parameters <doi:10.2135/cropsci1971.0011183X001100020006x>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, ecovalence by Wricke (1962), nonparametric stability parameters by Nassar&Huehn (1987) <doi:10.2307/2531947>, Francis&Kannenberg's parameters of stability (1978) <doi:10.4141/cjps78-157>.
This package implements the Adaptive Multiple Importance Sampling (AMIS) algorithm, as described by Retkute et al. (2021, <doi:10.1214/21-AOAS1486>), to estimate key epidemiological parameters by combining outputs from a geostatistical model of infectious diseases (such as prevalence, incidence, or relative risk) with a disease transmission model. Utilising the resulting posterior distributions, the package enables forward projections at the local level.