Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) <DOI:10.5705/ss.202016.0403> for stochastic and deterministic simulators. Additive and multiplicative discrepancy models are currently supported. See <http://www.matthewpratola.com/software> for more information and examples.
Manipulate and view coronavirus data and other societally relevant data at a basic level.
This package provides functions and command-line user interface to generate allocation sequence by covariate-adaptive randomization for clinical trials. The package currently supports six covariate-adaptive randomization procedures. Three hypothesis testing methods that are valid and robust under covariate-adaptive randomization are also available in the package to facilitate the inference for treatment effect under the included randomization procedures. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. See Ma W, Ye X, Tu F, and Hu F (2023) <doi: 10.18637/jss.v107.i02> for details.
This package provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients.
The Large Language Model (LLM) represents a groundbreaking advancement in data science and programming, and also allows us to extend the world of R. A seamless interface for integrating the OpenAI Web APIs into R is provided in this package. This package leverages LLM-based AI techniques, enabling efficient knowledge discovery and data analysis (see OpenAI Web APIs details <https://openai.com/blog/openai-api>). The previous functions such as seamless translation and image generation have been moved to other packages deepRstudio and stableDiffusion4R'.
Render tables in text format in the terminal using ANSI strings thanks to the cli and crayon packages.
Encrypts and decrypts strings using either the Caesar cipher or a pseudorandom number generation (using set.seed()) method.
It is designed to streamline the process of calculating complete annual growth rates with user-friendly functions and robust algorithms. It enables researchers and analysts to effortlessly generate precise growth rate estimates for their data. For method details see, Sharma, M.K.(2013) <https://www.indianjournals.com/ijor.aspx?target=ijor:jfl&volume=26&issue=1and2&article=018>. It offers a comprehensive suite of functions and customisable parameters. Equipped to handle varying complexities in data structures. It empowers users to uncover insightful growth dynamics and make informed decisions.
Are you spending too much time fetching and managing clinical trial data? Struggling with complex queries and bulk data extraction? What if you could simplify this process with just a few lines of code? Introducing clintrialx - Fetch clinical trial data from sources like ClinicalTrials.gov <https://clinicaltrials.gov/> and the Clinical Trials Transformation Initiative - Access to Aggregate Content of ClinicalTrials.gov database <https://aact.ctti-clinicaltrials.org/>, supporting pagination and bulk downloads. Also, you can generate HTML reports based on the data obtained from the sources!
Finds single- and two-arm designs using stochastic curtailment, as described by Law et al. (2022) <doi:10.1080/10543406.2021.2009498> and Law et al. (2021) <doi:10.1002/pst.2067> respectively. Designs can be single-stage or multi-stage. Non-stochastic curtailment is possible as a special case. Desired error-rates, maximum sample size and lower and upper anticipated response rates are inputted and suitable designs are returned with operating characteristics. Stopping boundaries and visualisations are also available. The package can find designs using other approaches, for example designs by Simon (1989) <doi:10.1016/0197-2456(89)90015-9> and Mander and Thompson (2010) <doi:10.1016/j.cct.2010.07.008>. Other features: compare and visualise designs using a weighted sum of expected sample sizes under the null and alternative hypotheses and maximum sample size; visualise any binary outcome design.
Loads and creates spatial data, including layers and tools that are relevant to the activities of the Commission for the Conservation of Antarctic Marine Living Resources. Provides two categories of functions: load functions and create functions. Load functions are used to import existing spatial layers from the online CCAMLR GIS such as the ASD boundaries. Create functions are used to create layers from user data such as polygons and grids.
Conditional distance correlation <doi:10.1080/01621459.2014.993081> is a novel conditional dependence measurement of two multivariate random variables given a confounding variable. This package provides conditional distance correlation, performs the conditional distance correlation sure independence screening procedure for ultrahigh dimensional data <https://www3.stat.sinica.edu.tw/statistica/J28N1/J28N114/J28N114.html>, and conducts conditional distance covariance test for conditional independence assumption of two multivariate variable.
This package provides the ability to create interaction maps, discover CNV map domains (edges), gene annotate interactions, and create interactive visualizations of these CNV interaction maps.
Generate mean and median weighted or unweighted spatial centers. Functions are analogous to their identically named counterparts within ArcGIS Pro'. Median center methodology based off of Kuhn and Kuenne (1962) <doi:10.1111/j.1467-9787.1962.tb00902.x>.
This package provides functions to analyze coarse data. Specifically, it contains functions to (1) fit parametric accelerated failure time models to interval-censored survival time data, and (2) estimate the case-fatality ratio in scenarios with under-reporting. This package's development was motivated by applications to infectious disease: in particular, problems with estimating the incubation period and the case fatality ratio of a given disease. Sample data files are included in the package. See Reich et al. (2009) <doi:10.1002/sim.3659>, Reich et al. (2012) <doi:10.1111/j.1541-0420.2011.01709.x>, and Lessler et al. (2009) <doi:10.1016/S1473-3099(09)70069-6>.
This package provides easy access to historical climate data in Canada from R. Search for weather stations and download raw hourly, daily or monthly weather data across Canada from 1840 to present. Implements public API access as detailed at <https://climate.weather.gc.ca>.
Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g., non-negativity, orthogonality, equality, inequality, monotonicity, unimodality, smoothness, etc. Includes flexible functions for solving MLS problems subject to user-specified equality and/or inequality constraints, as well as a wrapper function that implements 24 common constraint options. Also does k-fold or generalized cross-validation to tune constraint options for MLS problems. See ten Berge (1993, ISBN:9789066950832) for an overview of MLS problems, and see Goldfarb and Idnani (1983) <doi:10.1007/BF02591962> for a discussion of the underlying quadratic programming algorithm.
Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015) <DOI:10.1214/14-AOAS803> , this allows flexible modeling of movement in response to covariates (or covariate gradients) with model fitting possible within a Poisson GLM framework.
Estimation of population size of migratory caribou herds based on large scale aggregations monitored by radio telemetry. It implements the methodology found in the article by Rivest et al. (1998) about caribou abundance estimation. It also includes a function based on the Lincoln-Petersen Index as applied to radio telemetry data by White and Garrott (1990).
Access public spatial data available under the INSPIRE directive. Tools for downloading references and addresses of properties, as well as map images.
Statistical modeling for correlated count data using the beta-binomial distribution, described in Martin et al. (2020) <doi:10.1214/19-AOAS1283>. It allows for both mean and overdispersion covariates.
This package contains functions for the construction of carryover balanced crossover designs. In addition contains functions to check given designs for balance.
This package provides tools for implementing covariate-adjusted response-adaptive procedures for binary, continuous and survival responses. Users can flexibly choose between two functions based on their specific needs for each procedure: use real patient data from clinical trials to compute allocation probabilities directly, or use built-in simulation functions to generate synthetic patient data. Detailed methodologies and algorithms used in this package are described in the following references: Zhang, L. X., Hu, F., Cheung, S. H., & Chan, W. S. (2007)<doi:10.1214/009053606000001424> Zhang, L. X. & Hu, F. (2009) <doi:10.1007/s11766-009-0001-6> Hu, J., Zhu, H., & Hu, F. (2015) <doi:10.1080/01621459.2014.903846> Zhao, W., Ma, W., Wang, F., & Hu, F. (2022) <doi:10.1002/pst.2160> Mukherjee, A., Jana, S., & Coad, S. (2024) <doi:10.1177/09622802241287704>.
Package for the analysis of categorical functional data. The main purpose is to compute an encoding (real functional variable) for each state <doi:10.3390/math9233074>. It also provides functions to perform basic statistical analysis on categorical functional data.