Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Solving large scale distance weighted discrimination. The main algorithm is a symmetric Gauss-Seidel based alternating direction method of multipliers (ADMM) method. See Lam, X.Y., Marron, J.S., Sun, D.F., and Toh, K.C. (2018) <doi:10.48550/arXiv.1604.05473> for more details.
Simulation models (apps) of various within-host immune response scenarios. The purpose of the package is to help individuals learn about within-host infection and immune response modeling from a dynamical systems perspective. All apps include explanations of the underlying models and instructions on what to do with the models.
Dynamic slicing is a method designed for dependency detection between a categorical variable and a continuous variable. It could be applied for non-parametric hypothesis testing and gene set enrichment analysis.
Analysis of agreement for nominal data between two raters using the Delta model. This model is proposed as an alternative to the widespread measure Cohen kappa coefficient, which performs poorly when the marginal distributions are very asymmetric (Martin-Andres and Femia-Marzo (2004), <doi:10.1348/000711004849268>; Martin-Andres and Femia-Marzo (2008) <doi:10.1080/03610920701669884>). The package also contains a function to perform a massive analysis of multiple raters against a gold standard. A shiny app is also provided to obtain the measures of nominal agreement between two raters.
The twoStepsBenchmark() and threeRuleSmooth() functions allow you to disaggregate a low-frequency time series with higher frequency time series, using the French National Accounts methodology. The aggregated sum of the resulting time series is strictly equal to the low-frequency time series within the benchmarking window. Typically, the low-frequency time series is an annual one, unknown for the last year, and the high frequency one is either quarterly or monthly. See "Methodology of quarterly national accounts", Insee Méthodes N°126, by Insee (2012, ISBN:978-2-11-068613-8, <https://www.insee.fr/en/information/2579410>).
Easy visualization for datasets with more than two categorical variables and additional continuous variables. The package is particularly useful for exploring complex categorical data in the context of pathway analysis across multiple conditions. This package is now in maintenance-only mode and kept for legacy compatibility; for new projects and active development, please use the successor package ggdiceplot (see <https://github.com/maflot/ggdiceplot> and <https://dice-and-domino-plot.readthedocs.io/en/latest/>).
The data consist of a set of variables measured on several groups of individuals. To each group is associated an estimated probability density function. The package provides tools to create or manage such data and functional methods (principal component analysis, multidimensional scaling, cluster analysis, discriminant analysis...) for such probability densities.
Create and manage fault-tolerant task queues for the foreach package using the Redis key/value database.
An implementation of deliberative reasoning index (DRI) and related tools for analysis of deliberation survey data. Calculation of DRI, plot of intersubjective correlations (IC), generation of large-language model (LLM) survey data, and permutation tests are supported. Example datasets and a graphical user interface (GUI) are also available to support analysis. For more information, see Niemeyer and Veri (2022) <doi:10.1093/oso/9780192848925.003.0007>.
Collection of functions to help retrieve U.S. Geological Survey and U.S. Environmental Protection Agency water quality and hydrology data from web services.
Phone numbers are often represented as strings because there is no obvious and suitable native representation for them. This leads to high memory use and a lack of standard representation. The package provides integer representation of Australian phone numbers with optional raw vector calling code. The package name is an extension of au and ph'.
Given an initial set of points, this package minimizes the number of elements to discard from this set such that there exists at least one monotonic and convex mapping within pre-specified upper and lower bounds.
Estimators of Difference-in-Differences based on de Chaisemartin and D'Haultfoeuille.
Estimates probabilistic phylogenetic Principal Component Analysis (PCA) and non-phylogenetic probabilistic PCA. Provides methods to implement alternative models of trait evolution including Brownian motion (BM), Ornstein-Uhlenbeck (OU), Early Burst (EB), and Pagel's lambda. Also provides flexible biplot functions.
DECORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples) builds an ensemble of J48 trees by recursively adding artificial samples of the training data ("Melville, P., & Mooney, R. J. (2005) <DOI:10.1016/j.inffus.2004.04.001>").
This package provides a suite of functions for analyzing and visualizing the health economic outputs of mathematical models. This package was developed with funding from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health under award no. R01AI138783. The content of this package is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The theoretical underpinnings of dampack''s functionality are detailed in Hunink et al. (2014) <doi:10.1017/CBO9781139506779>.
Dataset containing information about job listings for data science job roles.
Fits dose-response models utilizing a Bayesian model averaging approach as outlined in Gould (2019) <doi:10.1002/bimj.201700211> for both continuous and binary responses. Longitudinal dose-response modeling is also supported in a Bayesian model averaging framework as outlined in Payne, Ray, and Thomann (2024) <doi:10.1080/10543406.2023.2292214>. Functions for plotting and calculating various posterior quantities (e.g. posterior mean, quantiles, probability of minimum efficacious dose, etc.) are also implemented. Copyright Eli Lilly and Company (2019).
This package provides access to Dataverse APIs <https://dataverse.org/> (versions 4-5), enabling data search, retrieval, and deposit. For Dataverse versions <= 3.0, use the archived dvn package <https://cran.r-project.org/package=dvn>.
This package provides a modular package for measuring disparity (multidimensional space occupancy). Disparity can be calculated from any matrix defining a multidimensional space. The package provides a set of implemented metrics to measure properties of the space and allows users to provide and test their own metrics. The package also provides functions for looking at disparity in a serial way (e.g. disparity through time) or per groups as well as visualising the results. Finally, this package provides several statistical tests for disparity analysis.
This package provides methods for (auto)covariance/correlation function estimation in change point regression with stationary errors circumventing the pre-estimation of the underlying signal of the observations. Generic, first-order, (m+1)-gapped, difference-based autocovariance function estimator is based on M. Levine and I. Tecuapetla-Gómez (2023) <doi:10.48550/arXiv.1905.04578>. Bias-reducing, second-order, (m+1)-gapped, difference-based estimator is based on I. Tecuapetla-Gómez and A. Munk (2017) <doi:10.1111/sjos.12256>. Robust autocovariance estimator for change point regression with autoregressive errors is based on S. Chakar et al. (2017) <doi:10.3150/15-BEJ782>. It also includes a general projection-based method for covariance matrix estimation.
Compute the dynamic threshold panel model suggested by (Stephanie Kremer, Alexander Bick and Dieter Nautz (2013) <doi:10.1007/s00181-012-0553-9>) in which they extended the (Hansen (1999) <doi: 10.1016/S0304-4076(99)00025-1>) original static panel threshold estimation and the Caner and (Hansen (2004) <doi:10.1017/S0266466604205011>) cross-sectional instrumental variable threshold model, where generalized methods of moments type estimators are used.
This package contains a robust set of tools designed for constructing deep neural networks, which are highly adaptable with user-defined loss function and probability models. It includes several practical applications, such as the (deepAFT) model, which utilizes a deep neural network approach to enhance the accelerated failure time (AFT) model for survival data. Another example is the (deepGLM) model that applies deep neural network to the generalized linear model (glm), accommodating data types with continuous, categorical and Poisson distributions.
This package provides a variety of methods to identify data quality issues in process-oriented data, which are useful to verify data quality in a process mining context. Builds on the class for activity logs implemented in the package bupaR'. Methods to identify data quality issues either consider each activity log entry independently (e.g. missing values, activity duration outliers,...), or focus on the relation amongst several activity log entries (e.g. batch registrations, violations of the expected activity order,...).