Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of tools for empirical analysis of diversity (a number and frequency of different types in a population) and similarity (a number and frequency of shared types in two populations) in biological or ecological systems.
Probability mass function, distribution function, quantile function, random generation and estimation for the skew discrete Laplace distributions.
This package provides extra functions to manipulate dendrograms that build on the base functions provided by the stats package. The main functionality it is designed to add is the ability to colour all the edges in an object of class dendrogram according to cluster membership i.e. each subtree is coloured, not just the terminal leaves. In addition it provides some utility functions to cut dendrogram and hclust objects and to set/get labels.
This package provides a Natural Language Processing Model trained to detect directness and intensity during conflict. See <https://www.mikeyeomans.info>.
This package provides a parallel backend for the %dopar% function using the Rmpi package.
Mechanistically models/predicts the phenology (macro-phases) of 10 crop plants (trained on a big dataset over 80 years derived from the German weather service (DWD) <https://opendata.dwd.de/>). Can be applied for remote sensing purposes, dynamically check the best subset of available covariates for the given dataset and crop.
Facilitates the import and analysis of SNP (single nucleotide polymorphism') and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. callrate', heterozygosity', reproducibility', maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR.base is the base package of the dartRverse suits of packages. To install the other packages, we recommend to install the dartRverse package, that supports the installation of all packages in the dartRverse'. If you want to cite dartR', you find the information by typing citation('dartR.base') in the console.
Allows users to quickly and easily detect data containing Personally Identifiable Information (PII) through convenience functions.
This package provides a HTML widget that shows differences between files (text, images, and data frames).
This package provides the ability to display something analogous to Python's docstrings within R. By allowing the user to document their functions as comments at the beginning of their function without requiring putting the function into a package we allow more users to easily provide documentation for their functions. The documentation can be viewed just like any other help files for functions provided by packages as well.
Estimates Two-way Fixed Effects difference-in-differences/event-study models using the approach proposed by Gardner (2021) <doi:10.48550/arXiv.2207.05943>. To avoid the problems caused by OLS estimation of the Two-way Fixed Effects model, this function first estimates the fixed effects and covariates using untreated observations and then in a second stage, estimates the treatment effects.
This package provides a R driver for Apache Drill<https://drill.apache.org>, which could connect to the Apache Drill cluster<https://drill.apache.org/docs/installing-drill-on-the-cluster> or drillbit<https://drill.apache.org/docs/embedded-mode-prerequisites> and get result(in data frame) from the SQL query and check the current configuration status. This link <https://drill.apache.org/docs> contains more information about Apache Drill.
In the context of data quality assessment, this package provides a number of functions for evaluating data quality across various dimensions, including completeness, plausibility, concordance, conformance, currency, timeliness, and correctness. It has been developed based on two well-known frameworksâ Michael G. Kahn (2016) <doi: 10.13063/2327-9214.1244> and Nicole G. Weiskopf (2017) <doi: 10.5334/egems.218>â for data quality assessment. Using this package, users can evaluate the quality of their datasets, provided that corresponding metadata are available.
This package provides functions for direct surrogate variable analysis, which can identify hidden factors in high-dimensional biomedical data.
This package contains a robust set of tools designed for constructing deep neural networks, which are highly adaptable with user-defined loss function and probability models. It includes several practical applications, such as the (deepAFT) model, which utilizes a deep neural network approach to enhance the accelerated failure time (AFT) model for survival data. Another example is the (deepGLM) model that applies deep neural network to the generalized linear model (glm), accommodating data types with continuous, categorical and Poisson distributions.
This package creates interactive genome browser. It joins the data analysis power of R and the visualization libraries of JavaScript in one package. Barrios, D. & Prieto, C. (2017) <doi:10.1089/cmb.2016.0213>.
Implement weighted higher-order initialization and angle-based iteration for multi-way spherical clustering under degree-corrected tensor block model. See reference Jiaxin Hu and Miaoyan Wang (2023) <doi:10.1109/TIT.2023.3239521>.
Manage your source code dependencies by decorating your existing R code with special, roxygen'-style comments.
Modeling the zero coupon yield curve using the dynamic De Rezende and Ferreira (2011) <doi:10.1002/for.1256> five factor model with variable or fixed decaying parameters. For explanatory purposes, the package also includes various short datasets of interest rates for the BRICS countries.
Probability generating function, formulae for the probabilities (discrete density) and random generation for discrete stable random variables.
In-line functions for multivariate optimization via desirability functions (Derringer and Suich, 1980, <doi:10.1080/00224065.1980.11980968>) with easy use within dplyr pipelines.
This package provides methods for analyzing population dynamics and movement tracks simulated using the DEPONS model <https://www.depons.eu> (v.3.0), for manipulating input raster files, shipping routes and for analyzing sound propagated from ships.
The dynpred package contains functions for dynamic prediction in survival analysis.
Flexible and efficient cleaning of data with interactivity. datacleanr facilitates best practices in data analyses and reproducibility with built-in features and by translating interactive/manual operations to code. The package is designed for interoperability, and so seamlessly fits into reproducible analyses pipelines in R'.