Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Dynamic treatment regime estimation and inference via G-estimation, dynamic weighted ordinary least squares (dWOLS) and Q-learning. Inference via bootstrap and recursive sandwich estimation. Estimation and inference for survival outcomes via Dynamic Weighted Survival Modeling (DWSurv). Extension to continuous treatment variables. Wallace et al. (2017) <DOI:10.18637/jss.v080.i02>; Simoneau et al. (2020) <DOI:10.1080/00949655.2020.1793341>.
Read Word documents containing bibliographic references, search for corresponding DOIs using the Crossref API, and append the retrieved DOIs directly to the references. Supports parallel processing for faster retrieval and produces a new Word document with numbered references including DOIs.
This package provides tools to fit sample selection models in case of discrete response variables, through a parametric formulation which represents a natural extension of the well-known Heckman selection model are provided in the package. The response variable can be of Bernoulli, Poisson or Negative Binomial type. The sample selection mechanism allows to choose among a Normal, Logistic or Gumbel distribution.
Secant acceleration applied to derivative-free Spectral Residual Methods for solving large-scale nonlinear systems of equations. The main reference follows: E. G. Birgin and J. M. Martinez (2022) <doi:10.1137/20M1388024>.
What is funnier than a dad joke? A dad joke in R! This package utilizes the API for <https://icanhazdadjoke.com> and returns dad jokes from several API endpoints.
This package provides a Graphical User Interface (GUI) to import, save, detrend and perform standard tree-ring analyses. The interactive detrending allows the user to check how well the detrending curve fits each time-series and change it when needed.
Spatial downscaling of coarse grid mapping to fine grid mapping using predictive covariates and a model fitted using the caret package. The original dissever algorithm was published by Malone et al. (2012) <doi:10.1016/j.cageo.2011.08.021>, and extended by Roudier et al. (2017) <doi:10.1016/j.compag.2017.08.021>.
There are many different formats dates are commonly represented with: the order of day, month, or year can differ, different separators ("-", "/", or whitespace) can be used, months can be numerical, names, or abbreviations and year given as two digits or four. datefixR takes dates in all these different formats and converts them to R's built-in date class. If datefixR cannot standardize a date, such as because it is too malformed, then the user is told which date cannot be standardized and the corresponding ID for the row. datefixR also allows the imputation of missing days and months with user-controlled behavior.
Includes functions that researchers or practitioners may use to clean raw data, transferring html, xlsx, txt data file into other formats. And it also can be used to manipulate text variables, extract numeric variables from text variables and other variable cleaning processes. It is originated from a author's project which focuses on creative performance in online education environment. The resulting paper of that study will be published soon.
This package implements maximum likelihood and bootstrap methods based on the diversity-dependent birth-death process to test whether speciation or extinction are diversity-dependent, under various models including various types of key innovations. See Etienne et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, <DOI:10.1098/rspb.2011.1439>, Etienne & Haegeman 2012, Am. Nat. 180: E75-E89, <DOI:10.1086/667574>, Etienne et al. 2016. Meth. Ecol. Evol. 7: 1092-1099, <DOI:10.1111/2041-210X.12565> and Laudanno et al. 2021. Syst. Biol. 70: 389â 407, <DOI:10.1093/sysbio/syaa048>. Also contains functions to simulate the diversity-dependent process.
This package provides a drop-in replacement for dplyr', powered by DuckDB for performance. Offers convenient utilities for working with in-memory and larger-than-memory data while retaining full dplyr compatibility.
Tissue-specific enrichment analysis to assess lists of candidate genes or RNA-Seq expression profiles. Pei G., Dai Y., Zhao Z. Jia P. (2019) deTS: Tissue-Specific Enrichment Analysis to decode tissue specificity. Bioinformatics, In submission.
Implementation of Das Gupta's standardisation and decomposition of population rates, as set out "Standardization and decomposition of rates: A userâ s manual", Das Gupta (1993) <https://www2.census.gov/library/publications/1993/demographics/p23-186.pdf>. The goal of these methods is to calculate adjusted rates based on compositional factors and quantify the contribution of each factor to the difference in crude rates between populations. The package offers functionality to handle various scenarios for any number of factors and populations, where said factors can be comprised of vectors across sub-populations (including cross-classified population breakdowns), and with the option to specify user-defined rate functions.
Distribution (S4-)classes for elliptically contoured distributions (based on package distr').
An R package for iterative and batched record linkage, and applying epidemiological case definitions. diyar can be used for deterministic and probabilistic record linkage, or multistage record linkage combining both approaches. It features the implementation of nested match criteria, and mechanisms to address missing data and conflicting matches during stepwise record linkage. Case definitions are implemented by assigning records to groups based on match criteria such as person or place, and overlapping time or duration of events e.g. sample collection dates or periods of hospital stays. Matching records are assigned a unique group ID. Index and duplicate records are removed or further analyses as required.
It generates summary statistics on the input dataset using different descriptive univariate statistical measures on entire data or at a group level. Though there are other packages which does similar job but each of these are deficient in one form or other, in the measures generated, in treating numeric, character and date variables alike, no functionality to view these measures on a group level or the way the output is represented. Given the foremost role of the descriptive statistics in any of the exploratory data analysis or solution development, there is a need for a more constructive, structured and refined version over these packages. This is the idea behind the package and it brings together all the required descriptive measures to give an initial understanding of the data quality, distribution in a faster,easier and elaborative way.The function brings an additional capability to be able to generate these statistical measures on the entire dataset or at a group level. It calculates measures of central tendency (mean, median), distribution (count, proportion), dispersion (min, max, quantile, standard deviation, variance) and shape (skewness, kurtosis). Addition to these measures, it provides information on the data type, count on no. of rows, unique entries and percentage of missing entries. More importantly the measures are generated based on the data types as required by them,rather than applying numerical measures on character and data variables and vice versa. Output as a dataframe object gives a very neat representation, which often is useful when working with a large number of columns. It can easily be exported as csv and analyzed further or presented as a summary report for the data.
Prediction methods where explanatory information is coded as a matrix of distances between individuals. Distances can either be directly input as a distances matrix, a squared distances matrix, an inner-products matrix or computed from observed predictors.
This package provides functionality for users who are learning R or the techniques of data analysis. Written as a collection of wrapper functions, the DTwrapper package facilitates many core operations of data processing. This is achieved with relatively few requirements about the order of the processing steps or knowledge of specialized syntax. DTwrappers creates coding results along with translations to data.table's code. This enables users to benefit from the speed and efficiency of data.table's calculations. Furthermore, the package also provides the translated code for educational purposes so that users can review working examples of coding syntax and calculations.
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.
This package provides tools for exploring the topography of 3d triangle meshes. The functions were developed with dental surfaces in mind, but could be applied to any triangle mesh of class mesh3d'. More specifically, doolkit allows to isolate the border of a mesh, or a subpart of the mesh using the polygon networks method; crop a mesh; compute basic descriptors (elevation, orientation, footprint area); compute slope, angularity and relief index (Ungar and Williamson (2000) <https://palaeo-electronica.org/2000_1/gorilla/issue1_00.htm>; Boyer (2008) <doi:10.1016/j.jhevol.2008.08.002>), inclination and occlusal relief index or gamma (Guy et al. (2013) <doi:10.1371/journal.pone.0066142>), OPC (Evans et al. (2007) <doi:10.1038/nature05433>), OPCR (Wilson et al. (2012) <doi:10.1038/nature10880>), DNE (Bunn et al. (2011) <doi:10.1002/ajpa.21489>; Pampush et al. (2016) <doi:10.1007/s10914-016-9326-0>), form factor (Horton (1932) <doi:10.1029/TR013i001p00350>), basin elongation (Schum (1956) <doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2>), lemniscate ratio (Chorley et al; (1957) <doi:10.2475/ajs.255.2.138>), enamel-dentine distance (Guy et al. (2015) <doi:10.1371/journal.pone.0138802>; Thiery et al. (2017) <doi:10.3389/fphys.2017.00524>), absolute crown strength (Schwartz et al. (2020) <doi:10.1098/rsbl.2019.0671>), relief rate (Thiery et al. (2019) <doi:10.1002/ajpa.23916>) and area-relative curvature; draw cumulative profiles of a topographic variable; and map a variable over a 3d triangle mesh.
This package provides convenient methods for accessing the data in dist objects with minimal memory and computational overhead. disttools can be used to extract the distance between any pair or combination of points encoded by a dist object using only the indices of those points. This is an improvement over existing functionality, which requires either coercing a dist object into a matrix or calculating the one dimensional index corresponding to a pair of observations. Coercion to a matrix is undesirable because doing so doubles the amount of memory required for storage. In contrast, there is no inherent downside to the latter solution. However, in part due to several edge cases, correctly and efficiently implementing such a solution can be challenging. disttools abstracts away these challenges and provides a simple interface to access the data in a dist object using the latter approach.
Deep Gaussian mixture models as proposed by Viroli and McLachlan (2019) <doi:10.1007/s11222-017-9793-z> provide a generalization of classical Gaussian mixtures to multiple layers. Each layer contains a set of latent variables that follow a mixture of Gaussian distributions. To avoid overparameterized solutions, dimension reduction is applied at each layer by way of factor models.
Main function "decode" is used to decode coded key values to plain text. Function "code" can be used to code plain text to code if there is a 1:1 relation between the two. The concept relies on keyvalue objects used for translation. There are several keyvalue objects included in the areas of geographical regional codes, administrative health care unit codes, diagnosis codes and more. It is also easy to extend the use by arbitrary code sets.
This package provides sample size and power calculations when the treatment time-lag effect is present and the lag duration is either homogeneous across the individual subject, or varies heterogeneously from individual to individual within a certain domain and following a specific pattern. The methods used are described in Xu, Z., Zhen, B., Park, Y., & Zhu, B. (2017) <doi:10.1002/sim.7157>.