Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Aster models are exponential family regression models for life history analysis. They are like generalized linear models except that elements of the response vector can have different families (e. g., some Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and can be dependent, the dependence indicated by a graphical structure. Discrete time survival analysis, zero-inflated Poisson regression, and generalized linear models that are exponential family (e. g., logistic regression and Poisson regression with log link) are special cases. Main use is for data in which there is survival over discrete time periods and there is additional data about what happens conditional on survival (e. g., number of offspring). Uses the exponential family canonical parameterization (aster transform of usual parameterization). Unlike the aster package, this package does dependence groups (nodes of the graph need not be conditionally independent given their predecessor node), including multinomial and two-parameter normal as families. Thus this package also generalizes mark-capture-recapture analysis.
The actfts package provides tools for performing autocorrelation analysis of time series data. It includes functions to compute and visualize the autocorrelation function (ACF) and the partial autocorrelation function (PACF). Additionally, it performs the Dickey-Fuller, KPSS, and Phillips-Perron unit root tests to assess the stationarity of time series. Theoretical foundations are based on Box and Cox (1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Box and Jenkins (1976) <isbn:978-0-8162-1234-2>, and Box and Pierce (1970) <doi:10.1080/01621459.1970.10481180>. Statistical methods are also drawn from Kolmogorov (1933) <doi:10.1007/BF00993594>, Kwiatkowski et al. (1992) <doi:10.1016/0304-4076(92)90104-Y>, and Ljung and Box (1978) <doi:10.1093/biomet/65.2.297>. The package integrates functions from forecast (Hyndman & Khandakar, 2008) <https://CRAN.R-project.org/package=forecast>, tseries (Trapletti & Hornik, 2020) <https://CRAN.R-project.org/package=tseries>, xts (Ryan & Ulrich, 2020) <https://CRAN.R-project.org/package=xts>, and stats (R Core Team, 2023) <https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html>. Additionally, it provides visualization tools via plotly (Sievert, 2020) <https://CRAN.R-project.org/package=plotly> and reactable (Glaz, 2023) <https://CRAN.R-project.org/package=reactable>. The package also incorporates macroeconomic datasets from the U.S. Bureau of Economic Analysis: Disposable Personal Income (DPI) <https://fred.stlouisfed.org/series/DPI>, Gross Domestic Product (GDP) <https://fred.stlouisfed.org/series/GDP>, and Personal Consumption Expenditures (PCEC) <https://fred.stlouisfed.org/series/PCEC>.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
The transmission between two time-series prices is assessed. It contains several functions for linear and nonlinear threshold co-integration, and furthermore, symmetric and asymmetric error correction models.
Create beautiful and interactive visualizations in a single function call. The data.table package is utilized to perform the data wrangling necessary to prepare your data for the plot types you wish to build, along with allowing fast processing for big data. There are two broad classes of plots available: standard plots and machine learning evaluation plots. There are lots of parameters available in each plot type function for customizing the plots (such as faceting) and data wrangling (such as variable transformations and aggregation).
This package provides a function that implements the acceptance-rejection method in an optimized manner to generate pseudo-random observations for discrete or continuous random variables. Proposed by von Neumann J. (1951), <https://mcnp.lanl.gov/pdf_files/>, the function is optimized to work in parallel on Unix-based operating systems and performs well on Windows systems. The acceptance-rejection method implemented optimizes the probability of generating observations from the desired random variable, by simply providing the probability function or probability density function, in the discrete and continuous cases, respectively. Implementation is based on references CASELLA, George at al. (2004) <https://www.jstor.org/stable/4356322>, NEAL, Radford M. (2003) <https://www.jstor.org/stable/3448413> and Bishop, Christopher M. (2006, ISBN: 978-0387310732).
Fits Modern Analogue Technique and Weighted Averaging transfer function models for prediction of environmental data from species data, and related methods used in palaeoecology.
Analyses of frequencies can be performed using an alternative test based on the G statistic. The test has similar type-I error rates and power as the chi-square test. However, it is based on a total statistic that can be decomposed in an additive fashion into interaction effects, main effects, simple effects, contrast effects, etc., mimicking precisely the logic of ANOVA. We call this set of tools ANOFA (Analysis of Frequency data) to highlight its similarities with ANOVA. This framework also renders plots of frequencies along with confidence intervals. Finally, effect sizes and planning statistical power are easily done under this framework. The ANOFA is a tool that assesses the significance of effects instead of the significance of parameters; as such, it is more intuitive to most researchers than alternative approaches based on generalized linear models. See Laurencelle and Cousineau (2023) <doi:10.20982/tqmp.19.2.p173>.
This package performs linear regression with respect to a data-driven convex loss function that is chosen to minimize the asymptotic covariance of the resulting M-estimator. The convex loss function is estimated in 5 steps: (1) form an initial OLS (ordinary least squares) or LAD (least absolute deviation) estimate of the regression coefficients; (2) use the resulting residuals to obtain a kernel estimator of the error density; (3) estimate the score function of the errors by differentiating the logarithm of the kernel density estimate; (4) compute the L2 projection of the estimated score function onto the set of decreasing functions; (5) take a negative antiderivative of the projected score function estimate. Newton's method (with Hessian modification) is then used to minimize the convex empirical risk function. Further details of the method are given in Feng et al. (2024) <doi:10.48550/arXiv.2403.16688>.
Retrieves open source airport data and provides tools to look up information, translate names into codes and vice-verse, as well as some basic calculation functions for measuring distances. Data is licensed under the Open Database License.
Grafts the extinct bird species from the Avotrex database (Sayol et al., in review) on to the BirdTree phylogenies <https://birdtree.org>, using a set of different commands.
This package provides a novel parametrization of log transformation and a shift parameter to automate the transformation process are proposed in R package AutoTransQF based on Feng et al. (2016). Please read Feng et al. (2016) <doi:10.1002/sta4.104> for more details of the method.
An interface to the AutoDesk API Platform including the Authentication API for obtaining authentication to the AutoDesk Forge Platform, Data Management API for managing data across the platform's cloud services, Design Automation API for performing automated tasks on design files in the cloud, Model Derivative API for translating design files into different formats, sending them to the viewer app, and extracting design data, and Viewer for rendering 2D and 3D models.
Example software for the analysis of data from designed experiments, especially agricultural crop experiments. The basics of the analysis of designed experiments are discussed using real examples from agricultural field trials. A range of statistical methods using a range of R statistical packages are exemplified . The experimental data is made available as separate data sets for each example and the R analysis code is made available as example code. The example code can be readily extended, as required.
This package provides functions for displaying multiple images or scatterplots with a color scale, i.e., heat maps, possibly with projected coordinates. The package relies on the base graphics system, so graphics are rendered rapidly.
This package provides a function for estimating factor models. Give factor-adjusted statistics, factor-adjusted mean estimation (one-sample test) or factor-adjusted mean difference estimation (two-sample test).
Estimates the attributable fraction in different sampling designs adjusted for measured confounders using logistic regression (cross-sectional and case-control designs), conditional logistic regression (matched case-control design), Cox proportional hazard regression (cohort design with time-to- event outcome), gamma-frailty model with a Weibull baseline hazard and instrumental variables analysis. An exploration of the AF with a genetic exposure can be found in the package AFheritability Dahlqwist E et al. (2019) <doi:10.1007/s00439-019-02006-8>.
Provides: (1) Tools to infer dominance hierarchies based on calculating Elo scores, but with custom functions to improve estimates in animals with relatively stable dominance ranks. (2) Tools to plot the shape of the dominance hierarchy and estimate the uncertainty of a given data set.
Designed for optimal use in performing fast, accurate walking strides segmentation from high-density data collected from a wearable accelerometer worn during continuous walking activity.
The company, Algorithmia, houses the largest marketplace of online algorithms. This package essentially holds a bunch of REST wrappers that make it very easy to call algorithms in the Algorithmia platform and access files and directories in the Algorithmia data API. To learn more about the services they offer and the algorithms in the platform visit <http://algorithmia.com>. More information for developers can be found at <https://algorithmia.com/developers>.
This package provides a set of Study Data Tabulation Model (SDTM) datasets from the Clinical Data Interchange Standards Consortium (CDISC) pilot project used for testing and developing Analysis Data Model (ADaM) derivations inside the admiral package.
DEPRECATED. Do not start building new projects based on this package. (The (in-house) APD file format was initially developed to store Affymetrix probe-level data, e.g. normalized CEL intensities. Chip types can be added to APD file and similar to methods in the affxparser package, this package provides methods to read APDs organized by units (probesets). In addition, the probe elements can be arranged optimally such that the elements are guaranteed to be read in order when, for instance, data is read unit by unit. This speeds up the read substantially. This package is supporting the Aroma framework and should not be used elsewhere.).
Estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent response and covariates are mismatched and observed intermittently within subjects. Kernel weighted estimating equations are used for generalized linear models with either time-invariant or time-dependent coefficients. Cao, H., Li, J., and Fine, J. P. (2016) <doi:10.1214/16-EJS1141>. Cao, H., Zeng, D., and Fine, J. P. (2015) <doi:10.1111/rssb.12086>.
Many complex plots are actually composite plots, such as oncoplot', funkyheatmap', upsetplot', etc. We can produce subplots using ggplot2 and combine them to create composite plots using aplot'. In this way, it is easy to customize these complex plots, by adding, deleting or modifying subplots in the final plot. This package provides a set of utilities to help users to create subplots and complex plots.