Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We provide a comprehensive software to estimate general K-stage DTRs from SMARTs with Q-learning and a variety of outcome-weighted learning methods. Penalizations are allowed for variable selection and model regularization. With the outcome-weighted learning scheme, different loss functions - SVM hinge loss, SVM ramp loss, binomial deviance loss, and L2 loss - are adopted to solve the weighted classification problem at each stage; augmentation in the outcomes is allowed to improve efficiency. The estimated DTR can be easily applied to a new sample for individualized treatment recommendations or DTR evaluation.
This package provides a robust identification of differential binding sites method for analyzing ChIP-seq (Chromatin Immunoprecipitation Sequencing) comparing two samples that considers an ensemble of finite mixture models combined with a local false discovery rate (fdr) allowing for flexible modeling of data. Methods for Differential Identification using Mixture Ensemble (DIME) is described in: Taslim et al., (2011) <doi:10.1093/bioinformatics/btr165>.
Perform nonparametric Bayesian analysis using Dirichlet processes without the need to program the inference algorithms. Utilise included pre-built models or specify custom models and allow the dirichletprocess package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects can act as building blocks for a variety of statistical models including and not limited to: density estimation, clustering and prior distributions in hierarchical models. See Teh, Y. W. (2011) <https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf>, among many other sources.
Estimation of heterogeneity-robust difference-in-differences estimators, with a binary, discrete, or continuous treatment, in designs where past treatments may affect the current outcome.
Data cloud geometry (DCG) applies random walks in finding community structures for social networks. Fushing, VanderWaal, McCowan, & Koehl (2013) (<doi:10.1371/journal.pone.0056259>).
In applications it is usual that some additional information is available. This package dawai (an acronym for Discriminant Analysis With Additional Information) performs linear and quadratic discriminant analysis with additional information expressed as inequality restrictions among the populations means. It also computes several estimations of the true error rate.
Validate dataset by columns and rows using convenient predicates inspired by assertr package. Generate good looking HTML report or print console output to display in logs of your data processing pipeline.
Classical Test and Item analysis, Item Response analysis and data management for educational and psychological tests.
Convert a directory structure into a JSON format. This package lets you recursively traverse a directory and convert its contents into a JSON object, making it easier to import code base from file systems into large language models.
Model selection algorithms for regression and classification, where the predictors can be continuous or categorical and the number of regressors may exceed the number of observations. The selected model consists of a subset of numerical regressors and partitions of levels of factors. Szymon Nowakowski, Piotr Pokarowski, Wojciech Rejchel and Agnieszka SoÅ tys, 2023. Improving Group Lasso for High-Dimensional Categorical Data. In: Computational Science â ICCS 2023. Lecture Notes in Computer Science, vol 14074, p. 455-470. Springer, Cham. <doi:10.1007/978-3-031-36021-3_47>. Aleksandra Maj-KaÅ ska, Piotr Pokarowski and Agnieszka Prochenka, 2015. Delete or merge regressors for linear model selection. Electronic Journal of Statistics 9(2): 1749-1778. <doi:10.1214/15-EJS1050>. Piotr Pokarowski and Jan Mielniczuk, 2015. Combined l1 and greedy l0 penalized least squares for linear model selection. Journal of Machine Learning Research 16(29): 961-992. <https://www.jmlr.org/papers/volume16/pokarowski15a/pokarowski15a.pdf>. Piotr Pokarowski, Wojciech Rejchel, Agnieszka SoÅ tys, MichaÅ Frej and Jan Mielniczuk, 2022. Improving Lasso for model selection and prediction. Scandinavian Journal of Statistics, 49(2): 831â 863. <doi:10.1111/sjos.12546>.
Analysis and visualization of dropout between conditions in surveys and (online) experiments. Features include computation of dropout statistics, comparing dropout between conditions (e.g. Chi square), analyzing survival (e.g. Kaplan-Meier estimation), comparing conditions with the most different rates of dropout (Kolmogorov-Smirnov) and visualizing the result of each in designated plotting functions. Sources: Andrea Frick, Marie-Terese Baechtiger & Ulf-Dietrich Reips (2001) <https://www.researchgate.net/publication/223956222_Financial_incentives_personal_information_and_drop-out_in_online_studies>; Ulf-Dietrich Reips (2002) "Standards for Internet-Based Experimenting" <doi:10.1027//1618-3169.49.4.243>.
The dfmirroR package allows users to input a data frame, simulate some number of observations based on specified columns of that data frame, and then outputs a string that contains the code to re-create the simulation. The goal is to both provide workable test data sets and provide users with the information they need to set up reproducible examples with team members. This package was created out of a need to share examples in cases where data are private and where a full data frame is not needed for testing or coordinating.
This package provides a comprehensive set of wrapper functions for the analysis of multiplex metabarcode data. It includes robust wrappers for Cutadapt and DADA2 to trim primers, filter reads, perform amplicon sequence variant (ASV) inference, and assign taxonomy. The package can handle single metabarcode datasets, datasets with two pooled metabarcodes, or multiple datasets simultaneously. The final output is a matrix per metabarcode, containing both ASV abundance data and associated taxonomic assignments. An optional function converts these matrices into phyloseq and taxmap objects. For more information on DADA2', including information on how DADA2 infers samples sequences, see Callahan et al. (2016) <doi:10.1038/nmeth.3869>. For more details on the demulticoder R package see Sudermann et al. (2025) <doi:10.1094/PHYTO-02-25-0043-FI>.
Graphical interface for loading datasets in RStudio from all installed (including unloaded) packages, also includes command line interfaces.
This package provides tools to create and manipulate probability distributions using S3. Generics pdf(), cdf(), quantile(), and random() provide replacements for base R's d/p/q/r style functions. Functions and arguments have been named carefully to minimize confusion for students in intro stats courses. The documentation for each distribution contains detailed mathematical notes.
Offers robust tools to identify and manage incomplete responses in survey datasets, thereby enhancing the quality and reliability of research findings.
The ts objects in R are managed using a very specific date format (in the form c(2022, 9) for September 2022 or c(2021, 2) for the second quarter of 2021, depending on the frequency, for example). We focus solely on monthly and quarterly series to manage the dates of ts objects. The general idea is to offer a set of functions to manage this date format without it being too restrictive or too imprecise depending on the rounding. This is a compromise between simplicity, precision and use of the basic stats functions for creating and managing time series (ts(), window()). Les objets ts en R sont gérés par un format de date très particulier (sous la forme c(2022, 9) pour septembre 2022 ou c(2021, 2) pour le deuxième trimestre 2021 selon la fréquence par exemple). On se concentre uniquement sur les séries mensuelles et trimestrielles pour gérer les dates des objets ts. Lidée générale est de proposer un ensemble de fonctions pour gérer ce format de date sans que ce soit trop contraignant ou trop imprécis selon les arrondis. Cest un compromis entre simplicité, précision et utilisation des fonctions du package stats de création et de gestion des séries temporelles (ts(), window()).
This package provides a convenient API interface to access immunological data within the CAVD DataSpace'(<https://dataspace.cavd.org>), a data sharing and discovery tool that facilitates exploration of HIV immunological data from pre-clinical and clinical HIV vaccine studies.
This package implements maximum likelihood methods for evaluating the durability of vaccine efficacy in a randomized, placebo-controlled clinical trial with staggered enrollment of participants and potential crossover of placebo recipients before the end of the trial. Lin, D. Y., Zeng, D., and Gilbert, P. B. (2021) <doi:10.1093/cid/ciab226> and Lin, D. Y., Gu, Y., Zeng, D., Janes, H. E., and Gilbert, P. B. (2021) <doi:10.1093/cid/ciab630>.
Derivative-Free optimization algorithms. These algorithms do not require gradient information. More importantly, they can be used to solve non-smooth optimization problems.
Diversification is one of the most important concepts in portfolio management. This framework offers scholars, practitioners and policymakers a useful toolbox to measure diversification. Specifically, this framework provides recent diversification measures from the recent literature. These diversification measures are based on the works of Rudin and Morgan (2006) <doi:10.3905/jpm.2006.611807>, Choueifaty and Coignard (2008) <doi:10.3905/JPM.2008.35.1.40>, Vermorken et al. (2012) <doi:10.3905/jpm.2012.39.1.067>, Flores et al. (2017) <doi:10.3905/jpm.2017.43.4.112>, Calvet et al. (2007) <doi:10.1086/524204>, and Candelon, Fuerst and Hasse (2020).
Bayesian networks with continuous and/or discrete variables can be learned and compared from data. The method is described in Boettcher and Dethlefsen (2003), <doi:10.18637/jss.v008.i20>.
This package provides Python-based extensions to enhance data analytics workflows, particularly for tasks involving data preprocessing and predictive modeling. Includes tools for data sampling, transformation, feature selection, balancing strategies (e.g., SMOTE), and model construction. These capabilities leverage Python libraries via the reticulate interface, enabling seamless integration with a broader machine learning ecosystem. Supports instance selection and hybrid workflows that combine R and Python functionalities for flexible and reproducible analytical pipelines. The architecture is inspired by the Experiment Lines approach, which promotes modularity, extensibility, and interoperability across tools. More information on Experiment Lines is available in Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.
This package provides a statistically and computationally efficient debiasing method for conducting valid inference on the high-dimensional linear regression function with missing outcomes. The reference paper is Zhang, Giessing, and Chen (2023) <arXiv:2309.06429>.