Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
In applications it is usual that some additional information is available. This package dawai (an acronym for Discriminant Analysis With Additional Information) performs linear and quadratic discriminant analysis with additional information expressed as inequality restrictions among the populations means. It also computes several estimations of the true error rate.
S4-classes and methods for distributions.
Monthly download stats of CRAN and Bioconductor packages. Download stats of CRAN packages is from the RStudio CRAN mirror', see <https://cranlogs.r-pkg.org:443>. Bioconductor package download stats is at <https://bioconductor.org/packages/stats/>.
Validate dataset by columns and rows using convenient predicates inspired by assertr package. Generate good looking HTML report or print console output to display in logs of your data processing pipeline.
Easy-to-use and efficient interface for Bayesian inference of complex panel (time series) data using dynamic multivariate panel models by Helske and Tikka (2024) <doi:10.1016/j.alcr.2024.100617>. The package supports joint modeling of multiple measurements per individual, time-varying and time-invariant effects, and a wide range of discrete and continuous distributions. Estimation of these dynamic multivariate panel models is carried out via Stan'. For an in-depth tutorial of the package, see (Tikka and Helske, 2024) <doi:10.48550/arXiv.2302.01607>.
Draw, manipulate, and evaluate directed acyclic graphs and simulate corresponding data, as described in International Journal of Epidemiology 50(6):1772-1777.
This package provides a thin wrapper around the Datorama API. Ideal for analyzing marketing data from <https://datorama.com>.
Provide a Dens-based method for estimating functional connection in large scale brain networks using partial correlation.
Collects a diverse range of symbolic data and offers a comprehensive set of functions that facilitate the conversion of traditional data into the symbolic data format.
This package creates full factorial experimental designs and designs based on orthogonal arrays for (industrial) experiments. Provides diverse quality criteria. Provides utility functions for the class design, which is also used by other packages for designed experiments.
This package implements a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. The model assumes an additive structure for the mean of each mixture component and the effects of continuous covariates are captured through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. The proposed method can also easily deal with parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects. Please see Rodriguez-Alvarez, Inacio et al. (2025) for more details.
This package creates a Dumbbell Plot.
Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) <https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi> Neural Networks YouTube playlist. Michael A. Nielsen <http://neuralnetworksanddeeplearning.com/> Neural Networks and Deep Learning.
This package produces SPSS- and SAS-like output for linear discriminant function analysis and canonical correlation analysis. The methods are described in Manly & Alberto (2017, ISBN:9781498728966), Rencher (2002, ISBN:0-471-41889-7), and Tabachnik & Fidell (2019, ISBN:9780134790541).
This package provides a Bayesian framework for parameter inference in differential equations. This approach offers a rigorous methodology for parameter inference as well as modeling the link between unobservable model states and parameters, and observable quantities. Provides templates for the DE model, the observation model and data likelihood, and the model parameters and their prior distributions. A Markov chain Monte Carlo (MCMC) procedure processes these inputs to estimate the posterior distributions of the parameters and any derived quantities, including the model trajectories. Further functionality is provided to facilitate MCMC diagnostics and the visualisation of the posterior distributions of model parameters and trajectories.
This package provides functions to download and treat data regarding the Brazilian Amazon region from a variety of official sources.
Generate point data for representing people within spatial data. This collects a suite of tools for creating simple dot density maps. Several functions from different spatial packages are standardized to take the same arguments so that they can be easily substituted for each other.
This package provides tools to estimate and manage empirical distributions, which should work with survey data. One of the main features is the possibility to create data cubes of estimated statistics, that include all the combinations of the variables of interest (see for example functions dcc5() and dcc6()).
This package contains the support functions for the Time Series Analysis book. We present a function to calculate MSE and MAE for inputs of actual and forecast values. We also have the code for disaggregation as found in Wei and Stram (1990, <doi:10.1111/j.2517-6161.1990.tb01799.x>), and Hodgess and Wei (1996, "Temporal Disaggregation of Time Series").
Computations for approximations and alternatives for the DPQ (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: '"dpq"'-functions.
Generate balanced factorial designs with crossed and nested random and fixed effects <https://github.com/mmrabe/designr>.
This package provides 2D and 3D tour animations as HTML widgets. The user can interact with the widgets using orbit controls, tooltips, brushing, and timeline controls. Linked brushing is supported using crosstalk', and widgets can be embedded in Shiny apps or HTML documents.
Traditional phasing programs are limited to diploid organisms. Our method modifies Li and Stephens algorithm with Markov chain Monte Carlo (MCMC) approaches, and builds a generic framework that allows haplotype searches in a multiple infection setting. This package is primarily developed as part of the Pf3k project, which is a global collaboration using the latest sequencing technologies to provide a high-resolution view of natural variation in the malaria parasite Plasmodium falciparum. Parasite DNA are extracted from patient blood sample, which often contains more than one parasite strain, with unknown proportions. This package is used for deconvoluting mixed haplotypes, and reporting the mixture proportions from each sample.
This package provides functions to download, process, and visualize German geospatial data across administrative levels, including states, districts, and municipalities. Supports interactive tables and customized maps using built-in or external datasets. Official shapefiles are accessed from the German Federal Agency for Cartography and Geodesy (BKG) <https://gdz.bkg.bund.de/>, licensed under dl-de/by-2-0 <https://www.govdata.de/dl-de/by-2-0>.