Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simulation and estimation of Exponential Random Graph Models (ERGMs) for small networks using exact statistics as shown in Vega Yon et al. (2020) <DOI:10.1016/j.socnet.2020.07.005>. As a difference from the ergm package, ergmito circumvents using Markov-Chain Maximum Likelihood Estimator (MC-MLE) and instead uses Maximum Likelihood Estimator (MLE) to fit ERGMs for small networks. As exhaustive enumeration is computationally feasible for small networks, this R package takes advantage of this and provides tools for calculating likelihood functions, and other relevant functions, directly, meaning that in many cases both estimation and simulation of ERGMs for small networks can be faster and more accurate than simulation-based algorithms.
Equating of multiple forms using Item Response Theory (IRT) methods. See Battauz (2025) <doi:10.18637/jss.v115.i11> for a detailed description of the package. See Battauz M. (2017) <doi:10.1007/s11336-016-9517-x>, Battauz and Leoncio (2023) <doi:10.1177/01466216231151702> and Haberman S. J. (2009) <doi:10.1002/j.2333-8504.2009.tb02197.x>) for the methods to link multiple test forms.
Empirical likelihood (EL) inference for two-sample problems. The following statistics are included: the difference of two-sample means, smooth Huber estimators, quantile (qdiff) and cumulative distribution functions (ddiff), probability-probability (P-P) and quantile-quantile (Q-Q) plots as well as receiver operating characteristic (ROC) curves. EL calculations are based on J. Valeinis, E. Cers (2011) <http://home.lu.lv/~valeinis/lv/petnieciba/EL_TwoSample_2011.pdf>.
"Evolutionary Virtual Education" - evolved - provides multiple tools to help educators (especially at the graduate level or in advanced undergraduate level courses) apply inquiry-based learning in general evolution classes. In particular, the tools provided include functions that simulate evolutionary processes (e.g., genetic drift, natural selection within a single locus) or concepts (e.g. Hardy-Weinberg equilibrium, phylogenetic distribution of traits). More than only simulating, the package also provides tools for students to analyze (e.g., measuring, testing, visualizing) datasets with characteristics that are common to many fields related to evolutionary biology. Importantly, the package is heavily oriented towards providing tools for inquiry-based learning - where students follow scientific practices to actively construct knowledge. For additional details, see package's vignettes.
Interact with the FRED API, <https://fred.stlouisfed.org/docs/api/fred/>, to fetch observations across economic series; find information about different economic sources, releases, series, etc.; conduct searches by series name, attributes, or tags; and determine the latest updates. Includes functions for creating panels of related variables with minimal effort and datasets containing data sources, releases, and popular FRED tags.
This package contains all the datasets that were used in Social Science Experiments: A Hands-On Introduction and in its R Companion. Relevant materials can be found at <https://osf.io/b78je>.
The Economic Policy Institute (<https://www.epi.org/>) provides researchers, media, and the public with easily accessible, up-to-date, and comprehensive historical data on the American labor force. It is compiled from Economic Policy Institute analysis of government data sources. Use it to research wages, inequality, and other economic indicators over time and among demographic groups. Data is usually updated monthly.
The concept of Essential Biodiversity Variables (EBV, <https://geobon.org/ebvs/what-are-ebvs/>) comes with a data structure based on the Network Common Data Form (netCDF). The ebvcube R package provides functionality to easily create, access and visualise this data. The EBV netCDFs can be downloaded from the EBV Data Portal: Christian Langer/ iDiv (2020) <https://portal.geobon.org/>.
This package provides functions for eleven procedures for determining the number of factors, including functions for parallel analysis and the minimum average partial test. There are also functions for conducting principal components analysis, principal axis factor analysis, maximum likelihood factor analysis, image factor analysis, and extension factor analysis, all of which can take raw data or correlation matrices as input and with options for conducting the analyses using Pearson correlations, Kendall correlations, Spearman correlations, gamma correlations, or polychoric correlations. Varimax rotation, promax rotation, and Procrustes rotations can be performed. Additional functions focus on the factorability of a correlation matrix, the congruences between factors from different datasets, the assessment of local independence, the assessment of factor solution complexity, internal consistency, and for correcting Pearson correlation coefficients for attenuation due to unreliability. Auerswald & Moshagen (2019, ISSN:1939-1463); Field, Miles, & Field (2012, ISBN:978-1-4462-0045-2); Mulaik (2010, ISBN:978-1-4200-9981-2); O'Connor (2000, <doi:10.3758/bf03200807>); O'Connor (2001, ISSN:0146-6216).
Calculates the empirical likelihood ratio and p-value for a mean-type hypothesis (or multiple mean-type hypotheses) based on two samples with possible censored data.
Uses data and constants to calculate potential evapotranspiration (PET) and actual evapotranspiration (AET) from 21 different formulations including Penman, Penman-Monteith FAO 56, Priestley-Taylor and Morton formulations.
Evolutionary process simulation using geometric morphometric data. Manipulation of landmark data files (TPS), shape plotting and distances plotting functions.
Calculates conditional exact tests (Fisher's exact test, Blaker's exact test, or exact McNemar's test) and unconditional exact tests (including score-based tests on differences in proportions, ratios of proportions, and odds ratios, and Boshcloo's test) with appropriate matching confidence intervals, and provides power and sample size calculations. Gives melded confidence intervals for the binomial case (Fay, et al, 2015, <DOI:10.1111/biom.12231>). Gives boundary-optimized rejection region test (Gabriel, et al, 2018, <DOI:10.1002/sim.7579>), an unconditional exact test for the situation where the controls are all expected to fail. Gives confidence intervals compatible with exact McNemar's or sign tests (Fay and Lumbard, 2021, <DOI:10.1002/sim.8829>). For review of these kinds of exact tests see Fay and Hunsberger (2021, <DOI:10.1214/21-SS131>).
Data that are collected through online sources such as Mechanical Turk may require excluding rows because of IP address duplication, geolocation, or completion duration. This package facilitates exclusion of these data for Qualtrics datasets.
This package provides a collection of advanced tools, methods and models specifically designed for analyzing different types of ecological networks - especially antagonistic (food webs, host-parasite), mutualistic (plant-pollinator, plant-fungus, etc) and competitive networks, as well as their variability in time and space. Statistical models are developed to describe and understand the mechanisms that determine species interactions, and to decipher the organization of these ecological networks (Ohlmann et al. (2019) <doi:10.1111/ele.13221>, Gonzalez et al. (2020) <doi:10.1101/2020.04.02.021691>, Miele et al. (2021) <doi:10.48550/arXiv.2103.10433>, Botella et al (2021) <doi:10.1111/2041-210X.13738>).
This package provides simple functions to create constraints for small test assembly problems (e.g. van der Linden (2005, ISBN: 978-0-387-29054-6)) using sparse matrices. Currently, GLPK', lpSolve', Symphony', and Gurobi are supported as solvers. The gurobi package is not available from any mainstream repository; see <https://www.gurobi.com/downloads/>.
This package provides functions to numericise R objects (coerce to numeric objects), summarise MCMC (Monte Carlo Markov Chain) samples and calculate deviance residuals as well as R translations of some BUGS (Bayesian Using Gibbs Sampling), JAGS (Just Another Gibbs Sampler), STAN and TMB (Template Model Builder) functions.
End-member modelling analysis of grain-size data is an approach to unmix a data set's underlying distributions and their contribution to the data set. EMMAgeo provides deterministic and robust protocols for that purpose.
Allows R users to retrieve and parse data from the Urban Institute's Education Data API <https://educationdata.urban.org/> into a data.frame for analysis.
This package provides functions to perform exploratory factor analysis (EFA) procedures and compare their solutions. The goal is to provide state-of-the-art factor retention methods and a high degree of flexibility in the EFA procedures. This way, for example, implementations from R psych and SPSS can be compared. Moreover, functions for Schmid-Leiman transformation and the computation of omegas are provided. To speed up the analyses, some of the iterative procedures, like principal axis factoring (PAF), are implemented in C++.
This package provides a comprehensive toolkit for single-cell annotation with the CellMarker2.0 database (see Xia Li, Peng Wang, Yunpeng Zhang (2023) <doi: 10.1093/nar/gkac947>). Streamlines biological label assignment in single-cell RNA-seq data and facilitates transcriptomic analysis, including preparation of TCGA<https://portal.gdc.cancer.gov/> and GEO<https://www.ncbi.nlm.nih.gov/geo/> datasets, differential expression analysis and visualization of enrichment analysis results. Additional utility functions support various bioinformatics workflows. See Wei Cui (2024) <doi: 10.1101/2024.09.14.609619> for more details.
This package provides a complete rewrite and reimagining of bakR (see Vock et al. (2025) <doi:10.1371/journal.pcbi.1013179>). Designed to support a wide array of analyses of nucleotide recoding RNA-seq (NR-seq) datasets of any type, including TimeLapse-seq/SLAM-seq/TUC-seq, Start-TimeLapse-seq (STL-seq), TT-TimeLapse-seq (TT-TL-seq), and subcellular NR-seq. EZbakR extends standard NR-seq standard NR-seq mutational modeling to support multi-label analyses (e.g., 4sU and 6sG dual labeling), and implements an improved hierarchical model to better account for transcript-to-transcript variance in metabolic label incorporation. EZbakR also generalized dynamical systems modeling of NR-seq data to support analyses of premature mRNA processing and flow between subcellular compartments. Finally, EZbakR implements flexible and well-powered comparative analyses of all estimated parameters via design matrix-specified generalized linear modeling.
Simulating multi-arm cluster-randomized, multi-site, and simple randomized trials. Includes functions for conducting multilevel analyses using both Bayesian and Frequentist methods. Supports futility and superiority analyses through Bayesian approaches, along with visualization tools to aid interpretation and presentation of results.
Capture code evaluations and script executions by expressions, outputs, and condition calls for logging.