Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Data published by the United States Federal Energy Regulatory Commission including electric company financial data, natural gas company financial data, hydropower plant data, liquified natural gas plant data, oil company financial data natural gas company financial data, and natural gas storage field data.
Simulates and estimates the Exponential Random Partition Model presented in the paper Hoffman, Block, and Snijders (2023) <doi:10.1177/00811750221145166>. It can also be used to estimate longitudinal partitions, following the model proposed in Hoffman and Chabot (2023) <doi:10.1016/j.socnet.2023.04.002>. The model is an exponential family distribution on the space of partitions (sets of non-overlapping groups) and is called in reference to the Exponential Random Graph Models (ERGM) for networks.
An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). ergm is a part of the Statnet suite of packages for network analysis. See Hunter, Handcock, Butts, Goodreau, and Morris (2008) <doi:10.18637/jss.v024.i03> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
The amplitude-dependent autoregressive time series model (EXPAR) proposed by Haggan and Ozaki (1981) <doi:10.2307/2335819> was improved by incorporating the moving average (MA) framework for capturing the variability efficiently. Parameters of the EXPARMA model can be estimated using this package. The user is provided with the best fitted EXPARMA model for the data set under consideration.
This package provides various functions for reading and preparing the Panel Study of Income Dynamics (PSID) for longitudinal analysis, including functions that read the PSID's fixed width format files directly into R, rename all of the PSID's longitudinal variables so that recurring variables have consistent names across years, simplify assembling longitudinal datasets from cross sections of the PSID Family Files, and export the resulting PSID files into file formats common among other statistical programming languages ('SAS', STATA', and SPSS').
Total Time on Test plot and routines for parameter estimation of any lifetime distribution implemented in R via maximum likelihood (ML) given a data set. It is implemented thinking on parametric survival analysis, but it feasible to use in parameter estimation of probability density or mass functions in any field. The main routines maxlogL and maxlogLreg are wrapper functions specifically developed for ML estimation. There are included optimization procedures such as nlminb and optim from base package, and DEoptim Mullen (2011) <doi:10.18637/jss.v040.i06>. Standard errors are estimated with numDeriv Gilbert (2011) <https://CRAN.R-project.org/package=numDeriv> or the option Hessian = TRUE of optim function.
Supports designing efficient discrete choice experiments (DCEs). Experimental designs can be formed on the basis of orthogonal arrays or search methods for optimal designs (Federov or mixed integer programs). Various methods for converting these experimental designs into a discrete choice experiment. Many efficiency measures! Draws from literature of Kuhfeld (2010) and Street et. al (2005) <doi:10.1016/j.ijresmar.2005.09.003>.
This package provides a collection of tools for representing epidemiological contact data, composed of case line lists and contacts between cases. Also contains procedures for data handling, interactive graphics, and statistics.
This package provides a collection of curated educational datasets for teaching ecology and agriculture concepts. Includes data on wildlife monitoring, plant treatments, and ecological observations with documentation and examples for educational use. All datasets are derived from published scientific studies and are available under CC0 or compatible licenses.
This package provides computational methods for detecting adverse high-order drug interactions from individual case safety reports using statistical techniques, allowing the exploration of higher-order interactions among drug cocktails.
Provide estimation and data generation tools for new multivariate frailty models. This version includes the gamma, inverse Gaussian, weighted Lindley, Birnbaum-Saunders, truncated normal, mixture of inverse Gaussian, mixture of Birnbaum-Saunders, generalized exponential and Jorgensen-Seshadri-Whitmore as the distribution for frailty terms. For the basal model, it is considered a parametric approach based on the exponential, Weibull and the piecewise exponential distributions as well as a semiparametric approach. For details, see Gallardo et al. (2024) <doi:10.1007/s11222-024-10458-w>, Gallardo et al. (2025) <doi:10.1002/bimj.70044>, Kiprotich et al. (2025) <doi:10.1177/09622802251338984> and Gallardo et al. (2025) <doi:10.1038/s41598-025-15903-y>.
Measurement and partitioning of diversity, based on Tsallis entropy, following Marcon and Herault (2015) <doi:10.18637/jss.v067.i08>. entropart provides functions to calculate alpha, beta and gamma diversity of communities, including phylogenetic and functional diversity. Estimation-bias corrections are available.
Function and data sets in the book entitled "R ile Temel Ekonometri", S.Guris, E.C.Akay, B. Guris(2020). The book published in Turkish. It is possible to makes Durbin two stage method for autocorrelation, generalized differencing method for correction autocorrelation, Hausman Test for identification and computes LM, LR and Wald test statistics for redundant variable by using the functions written in this package.
This package provides a set of functions to solve Erlang-C model. The Erlang C formula was invented by the Danish Mathematician A.K. Erlang and is used to calculate the number of advisors and the service level.
This package provides functions for extreme value theory, which may be divided into the following groups; exploratory data analysis, block maxima, peaks over thresholds (univariate and bivariate), point processes, gev/gpd distributions.
The new yield tables developed by the Northwest German Forest Research Institute (NW-FVA) provide a forest management tool for the five main commercial tree species oak, beech, spruce, Douglas-fir and pine for northwestern Germany. The new method applied for deriving yield tables combines measurements of growth and yield trials with growth simulations using a state-of-the-art single-tree growth simulator. By doing so, the new yield tables reflect the current increment level and the recommended graduated thinning from above is the underlying management concept. The yield tables are provided along with methods for deriving the site index and for interpolating between age and site indices and extrapolating beyond age and site index ranges. The inter-/extrapolations are performed traditionally by the rule of proportion or with a functional approach.
This package performs the exact test on whether there is a difference between two survival curves. Exact confidence interval for the hazard ratio can also be generated for the Cox model.
Analyses EuFMDiS output files in a Shiny App. The distributions of relevant output parameters are described in form of tables (quantiles) and plots. The App is called using eufmdis.adapt::run_adapt().
Detect outliers in one-dimensional data.
This data management package provides some helper classes for publicly available data sources (HMD, DESTATIS) in Demography. Similar to ideas developed in the Bioconductor project <https://bioconductor.org> we strive to encapsulate data in easy to use S4 objects. If original data is provided in a text file, the resulting S4 object contains all information from that text file. But the information is somehow structured (header, footer, etc). Further the classes provide methods to make a subset for selected calendar years or selected regions. The resulting subset objects still contain the original header and footer information.
Runs a Shiny App in the local machine for basic statistical and graphical analyses. The point-and-click interface of Shiny App enables obtaining the same analysis outputs (e.g., plots and tables) more quickly, as compared with typing the required code in R, especially for users without much experience or expertise with coding. Examples of possible analyses include tabulating descriptive statistics for a variable, creating histograms by experimental groups, and creating a scatter plot and calculating the correlation between two variables.
An intuitive and user-friendly package designed to aid undergraduate students in understanding and applying econometric methods in their studies, Tailored specifically for Econometrics and Regression Modeling courses, it provides a practical toolkit for modeling and analyzing econometric data with detailed inference capabilities.
The purpose of Early Warning Systems (EWS) is to detect accurately the occurrence of a crisis, which is represented by a binary variable which takes the value of one when the event occurs, and the value of zero otherwise. EWS are a toolbox for policymakers to prevent or attenuate the impact of economic downturns. Modern EWS are based on the econometric framework of Kauppi and Saikkonen (2008) <doi:10.1162/rest.90.4.777>. Specifically, this framework includes four dichotomous models, relying on a logit approach to model the relationship between yield spreads and future recessions, controlling for recession risk factors. These models can be estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014) <doi:10.1016/j.ijforecast.2014.03.015>. This package provides both methods for estimating these models and a dataset covering 13 OECD countries over a period of 45 years. In addition, this package also provides methods for the analysis of the propagation mechanisms of an exogenous shock, as well as robust confidence intervals for these response functions using a block-bootstrap method as in Lajaunie (2021). This package constitutes a useful toolbox (data and functions) for scholars as well as policymakers.
Evolutionary game theory applies game theory to evolving populations in biology, see e.g. one of the books by Weibull (1994, ISBN:978-0262731218) or by Sandholm (2010, ISBN:978-0262195874) for more details. A comprehensive set of tools to illustrate the core concepts of evolutionary game theory, such as evolutionary stability or various evolutionary dynamics, for teaching and academic research is provided.