Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The peak fitting of spectral data is performed by using the frame work of EM algorithm. We adapted the EM algorithm for the peak fitting of spectral data set by considering the weight of the intensity corresponding to the measurement energy steps (Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019, 2021 and 2023) <doi:10.1080/14686996.2019.1620123>, <doi:10.1080/27660400.2021.1899449> <doi:10.1080/27660400.2022.2159753>. The package efficiently estimates the parameters of Gaussian mixture model during iterative calculation between E-step and M-step, and the parameters are converged to a local optimal solution. This package can support the investigation of peak shift with two advantages: (1) a large amount of data can be processed at high speed; and (2) stable and automatic calculation can be easily performed.
This package provides methods for constructing confidence or credible regions for exceedance sets and contour lines.
Extensions of the kernel smoothing functions from the ks package for compatibility with the tidyverse and geospatial ecosystems <doi:10.1007/s00180-024-01543-9>.
Evolutionary relatedness dependent diversification simulation powered by the Rcpp back-end SimTable'.
Calculates 15 different goodness of fit criteria. These are; standard deviation ratio (SDR), coefficient of variation (CV), relative root mean square error (RRMSE), Pearson's correlation coefficients (PC), root mean square error (RMSE), performance index (PI), mean error (ME), global relative approximation error (RAE), mean relative approximation error (MRAE), mean absolute percentage error (MAPE), mean absolute deviation (MAD), coefficient of determination (R-squared), adjusted coefficient of determination (adjusted R-squared), Akaike's information criterion (AIC), corrected Akaike's information criterion (CAIC), Mean Square Error (MSE), Bayesian Information Criterion (BIC) and Normalized Mean Square Error (NMSE).
Computation of the EQL for a given family of variance functions, Saddlepoint-approximations and related auxiliary functions (e.g. Hermite polynomials).
Computes the probability density and cumulative distribution functions of fourteen distributions used for the probabilistic hazard assessment. Estimates the model parameters of the distributions using the maximum likelihood and reports the goodness-of-fit statistics. The recurrence interval estimations of earthquakes are computed for each distribution.
An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.
Estimate the effective reproduction number from wastewater and clinical data sources.
This package provides functions supporting the reading and parsing of internal e-book content from EPUB files. The epubr package provides functions supporting the reading and parsing of internal e-book content from EPUB files. E-book metadata and text content are parsed separately and joined together in a tidy, nested tibble data frame. E-book formatting is not completely standardized across all literature. It can be challenging to curate parsed e-book content across an arbitrary collection of e-books perfectly and in completely general form, to yield a singular, consistently formatted output. Many EPUB files do not even contain all the same pieces of information in their respective metadata. EPUB file parsing functionality in this package is intended for relatively general application to arbitrary EPUB e-books. However, poorly formatted e-books or e-books with highly uncommon formatting may not work with this package. There may even be cases where an EPUB file has DRM or some other property that makes it impossible to read with epubr'. Text is read as is for the most part. The only nominal changes are minor substitutions, for example curly quotes changed to straight quotes. Substantive changes are expected to be performed subsequently by the user as part of their text analysis. Additional text cleaning can be performed at the user's discretion, such as with functions from packages like tm or qdap'.
This package provides tools for importing, analyzing and visualizing ego-centered network data. Supports several data formats, including the export formats of EgoNet', EgoWeb 2.0 and openeddi'. An interactive (shiny) app for the intuitive visualization of ego-centered networks is provided. Also included are procedures for creating and visualizing Clustered Graphs (Lerner 2008 <DOI:10.1109/PACIFICVIS.2008.4475458>).
An R interface to United States Environmental Protection Agency (EPA) Environmental Compliance History Online ('ECHO') Application Program Interface (API). ECHO provides information about EPA permitted facilities, discharges, and other reporting info associated with permitted entities. Data are obtained from <https://echo.epa.gov/>.
This package provides a non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.
This package provides functions to align curves and to compute mean curves based on the elastic distance defined in the square-root-velocity framework. For more details on this framework see Srivastava and Klassen (2016, <doi:10.1007/978-1-4939-4020-2>). For more theoretical details on our methods and algorithms see Steyer et al. (2023, <doi:10.1111/biom.13706>) and Steyer et al. (2023, <arXiv:2305.02075>).
This package implements the methods of McGrath et al. (2020) <doi:10.1177/0962280219889080> and Cai et al. (2021) <doi:10.1177/09622802211047348> for estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. These methods can be applied to studies that report the sample median, sample size, and one or both of (i) the sample minimum and maximum values and (ii) the first and third quartiles. The corresponding standard error estimators described by McGrath et al. (2023) <doi:10.1177/09622802221139233> are also included.
This package provides a flexible framework for Agent-Based Models (ABM), the epiworldR package provides methods for prototyping disease outbreaks and transmission models using a C++ backend, making it very fast. It supports multiple epidemiological models, including the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Removed (SIR), Susceptible-Exposed-Infected-Removed (SEIR), and others, involving arbitrary mitigation policies and multiple-disease models. Users can specify infectiousness/susceptibility rates as a function of agents features, providing great complexity for the model dynamics. Furthermore, epiworldR is ideal for simulation studies featuring large populations.
Parametric and nonparametric statistics for single-case design. Regarding nonparametric statistics, the index suggested by Parker, Vannest, Davis and Sauber (2011) <doi:10.1016/j.beth.2010.08.006> was included. It combines both nonoverlap and trend to estimate the effect size of a treatment in a single case design.
Pacote para a analise de experimentos havendo duas variaveis explicativas quantitativas e uma variavel dependente quantitativa. Os experimentos podem ser sem repeticoes ou com delineamento estatistico. Sao ajustados 12 modelos de regressao multipla e plotados graficos de superficie resposta (Hair JF, 2016) <ISBN:13:978-0138132637>.(Package for the analysis of experiments having two explanatory quantitative variables and one quantitative dependent variable. The experiments can be without repetitions or with a statistical design. Twelve multiple regression models are fitted and response surface graphs are plotted (Hair JF, 2016) <ISBN:13:978-0138132637>).
Exploitation, processing and 2D-3D visualization of DICOM-RT files (structures, dosimetry, imagery) for medical physics and clinical research, in a patient-oriented perspective.
Produce maximum likelihood estimates of common accuracy statistics for multiple measurement methods when a gold standard is not available. An R implementation of the expectation maximization algorithms described in Zhou et al. (2011) <doi:10.1002/9780470906514> with additional functions for creating simulated data and visualizing results. Supports binary, ordinal, and continuous measurement methods.
Implementation of the Edge Selection Algorithm for undirected graph selection. The least angle regression-based algorithm selects edges of an undirected graph based on the projection of the current residuals on the two dimensional edge-planes. The algorithm selects symmetric adjacency matrix, which many other regression-based undirected graph selection procedures cannot do.
Runs the eDITH (environmental DNA Integrating Transport and Hydrology) model, which implements a mass balance of environmental DNA (eDNA) transport at a river network scale coupled with a species distribution model to obtain maps of species distribution. eDITH can work with both eDNA concentration (e.g., obtained via quantitative polymerase chain reaction) or metabarcoding (read count) data. Parameter estimation can be performed via Bayesian techniques (via the BayesianTools package) or optimization algorithms. An interface to the DHARMa package for posterior predictive checks is provided. See Carraro and Altermatt (2024) <doi:10.1111/2041-210X.14317> for a package introduction; Carraro et al. (2018) <doi:10.1073/pnas.1813843115> and Carraro et al. (2020) <doi:10.1038/s41467-020-17337-8> for methodological details.
The main function, ProtectTable(), performs table suppression according to a frequency rule with a data set as the only required input. Within this function, protectTable(), protect_linked_tables() or runArgusBatchFile() in package sdcTable is called. Lists of level-hierarchy (parameter dimList') and other required input to these functions are created automatically. The suppression method Gauss (default) is implemented independently of sdcTable'. The function, PTgui(), starts a graphical user interface based on the shiny package.
Speed up common tasks, particularly logical or relational comparisons and routine follow up tasks such as finding the indices and subsetting. Inspired by mathematics, where something like: 3 < x < 6 is a standard, elegant and clear way to assert that x is both greater than 3 and less than 6 (see for example <https://en.wikipedia.org/wiki/Relational_operator>), a chaining operator is implemented. The chaining operator, %c%, allows multiple relational operations to be used in quotes on the right hand side for the same object, on the left hand side. The %e% operator allows something like set-builder notation (see for example <https://en.wikipedia.org/wiki/Set-builder_notation>) to be used on the right hand side. All operators have built in prefixes defined for all, subset, and which to reduce the amount of code needed for common tasks, such as return those values that are true.