Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The centralized empirical cumulative average deviation function is utilized to develop both Ada-plot and Uda-plot as alternatives to Ad-plot and Ud-plot introduced by the author. Analogous to Ad-plot, Ada-plot can identify symmetry, skewness, and outliers of the data distribution. The Uda-plot is as exceptional as Ud-plot in assessing normality. The d-value that quantifies the degree of proximity between the Uda-plot and the graph of the estimated normal density function helps guide to make decisions on confirmation of normality. Extreme values in the data can be eliminated using the 1.5IQR rule to create its robust version if user demands. Full description of the methodology can be found in the article by Wijesuriya (2025a) <doi:10.1080/03610926.2025.2558108>. Further, the development of Ad-plot and Ud-plot is contained in both article and the adplots R package by Wijesuriya (2025b & 2025c) <doi:10.1080/03610926.2024.2440583> and <doi:10.32614/CRAN.package.adplots>.
This package provides a cross-platform R framework that facilitates processing of any number of Affymetrix microarray samples regardless of computer system. The only parameter that limits the number of chips that can be processed is the amount of available disk space. The Aroma Framework has successfully been used in studies to process tens of thousands of arrays. This package has actively been used since 2006.
This package provides functions for processing and analyzing survey data from the All of Us Social Determinants of Health (AOUSDOH) program, including tools for calculating health and well-being scores, recoding variables, and simplifying survey data analysis. For more details see - Koleck TA, Dreisbach C, Zhang C, Grayson S, Lor M, Deng Z, Conway A, Higgins PDR, Bakken S (2024) <doi:10.1093/jamia/ocae214>.
Manage and analyze animal movement data. The functionality of amt includes methods to calculate home ranges, track statistics (e.g. step lengths, speed, or turning angles), prepare data for fitting habitat selection analyses, and simulation of space-use from fitted step-selection functions.
Simplifies aspects of linear regression analysis, particularly simultaneous inference. Additionally, supports "A Progressive Introduction to Linear Models" by Joshua French (<https://jfrench.github.io/LinearRegression/>).
Create beautiful and interactive visualizations in a single function call. The data.table package is utilized to perform the data wrangling necessary to prepare your data for the plot types you wish to build, along with allowing fast processing for big data. There are two broad classes of plots available: standard plots and machine learning evaluation plots. There are lots of parameters available in each plot type function for customizing the plots (such as faceting) and data wrangling (such as variable transformations and aggregation).
High performance variant of apply() for a fixed set of functions. Considerable speedup of this implementation is a trade-off for universality: user defined functions cannot be used with this package. However, about 20 most currently employed functions are available for usage. They can be divided in three types: reducing functions (like mean(), sum() etc., giving a scalar when applied to a vector), mapping function (like normalise(), cumsum() etc., giving a vector of the same length as the input vector) and finally, vector reducing function (like diff() which produces result vector of a length different from the length of input vector). Optional or mandatory additional arguments required by some functions (e.g. norm type for norm()) can be passed as named arguments in ...'.
Allows users to stem Arabic texts for text analysis.
This package performs linear regression with respect to a data-driven convex loss function that is chosen to minimize the asymptotic covariance of the resulting M-estimator. The convex loss function is estimated in 5 steps: (1) form an initial OLS (ordinary least squares) or LAD (least absolute deviation) estimate of the regression coefficients; (2) use the resulting residuals to obtain a kernel estimator of the error density; (3) estimate the score function of the errors by differentiating the logarithm of the kernel density estimate; (4) compute the L2 projection of the estimated score function onto the set of decreasing functions; (5) take a negative antiderivative of the projected score function estimate. Newton's method (with Hessian modification) is then used to minimize the convex empirical risk function. Further details of the method are given in Feng et al. (2024) <doi:10.48550/arXiv.2403.16688>.
Computation of adherence to medications from Electronic Health care Data and visualization of individual medication histories and adherence patterns. The package implements a set of S3 classes and functions consistent with current adherence guidelines and definitions. It allows the computation of different measures of adherence (as defined in the literature, but also several original ones), their publication-quality plotting, the estimation of event duration and time to initiation, the interactive exploration of patient medication history and the real-time estimation of adherence given various parameter settings. It scales from very small datasets stored in flat CSV files to very large databases and from single-thread processing on mid-range consumer laptops to parallel processing on large heterogeneous computing clusters. It exposes a standardized interface allowing it to be used from other programming languages and platforms, such as Python.
The functions defined in this program serve for implementing adaptive two-stage tests. Currently, four tests are included: Bauer and Koehne (1994), Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal conditional error function. User-defined tests can also be implemented. Reference: Vandemeulebroecke, An investigation of two-stage tests, Statistica Sinica 2006.
Provide addins for RStudio'. It currently contains 3 addins. The first to add a shortcut for the double pipe. The second is to add a shortcut for the same operator. And the third to simplify the creation of vectors from texts pasted from the computer transfer area.
This package provides a powerful tool for automating the early detection of seasonal epidemic onsets in time series data. It offers the ability to estimate growth rates across consecutive time intervals, calculate the sum of cases (SoC) within those intervals, and estimate seasonal onsets within user defined seasons. With use of a disease-specific threshold it also offers the possibility to estimate seasonal onset of epidemics. Additionally it offers the ability to estimate burden levels for seasons based on historical data. It is aimed towards epidemiologists, public health professionals, and researchers seeking to identify and respond to seasonal epidemics in a timely fashion.
Weather indices are formed from weather variables in this package. The users can input any number of weather variables recorded over any number of weeks. This package has no restriction on the number of weeks and weather variables to be taken as input.The details of the method can be seen (i)'Joint effects of weather variables on rice yields by R. Agrawal, R. C. Jain and M. P. Jha in Mausam, vol. 34, pp. 189-194, 1983,<doi:10.54302/mausam.v34i2.2392>,(ii)'Improved weather indices based Bayesian regression model for forecasting crop yield by M. Yeasin, K. N. Singh, A. Lama and B. Gurung in Mausam, vol. 72, pp.879-886, 2021,<doi:10.54302/mausam.v72i4.670>.
This package implements the allan variance and allan variance linear regression estimator for latent time series models. More details about the method can be found, for example, in Guerrier, S., Molinari, R., & Stebler, Y. (2016) <doi:10.1109/LSP.2016.2541867>.
This package provides a toolbox for programming Clinical Data Standards Interchange Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>). The package is an extension package of the admiral package focusing on the metabolism therapeutic area.
This package provides a graphical method for joint visualisation of Variant Set Association Test (VSAT) results and individual variant association statistics. The Archipelago method assigns genomic coordinates to variant set statistics, allowing simultaneous display of variant-level and set-level signals in a unified plot. This supports interpretation of both collective and individual variant contributions in genetic association studies using variant aggregation approaches. For more see Lawless et al. (2026) <doi:10.1002/gepi.70025>.
This package creates pre- and post- intervention scattergrams based on audiometric data. These scattergrams are formatted for publication in Otology & Neurotology and other otolaryngology journals. For more details, see Gurgel et al (2012) <doi:10.1177/0194599812458401>, Oghalai and Jackler (2016) <doi:10.1177/0194599816638314>.
The aligned rank transform for nonparametric factorial ANOVAs as described by Wobbrock, Findlater, Gergle, and Higgins (2011) <doi:10.1145/1978942.1978963>. Also supports aligned rank transform contrasts as described by Elkin, Kay, Higgins, and Wobbrock (2021) <doi:10.1145/3472749.3474784>.
Data from Gardner and Janson art history textbooks about both the artists featured in these books as well as their works. See Helen Gardner ("Art through the ages; an introduction to its history and significance," 1926, <https://find.library.duke.edu/catalog/DUKE000104481>. Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1980, ISBN: 0155037587). Fred S. Kleiner ("Gardnerâ s art through the ages: a global history," 2020, ISBN: 9781337630702). Horst de la Croix and Richard G. Tansey ("Gardner's art through the ages," 1986, ISBN: 0155037633). Helen Gardner ("Art through the ages; an introduction to its history and significance," 1936, <https://find.library.duke.edu/catalog/DUKE001199463>). Helen Gardner ("Art through the ages," 1948, <https://find.library.duke.edu/catalog/DUKE001199466>). Helen Gardner, revised under the editorship of Sumner M. Crosby ("Art through the ages," 1959, <https://find.library.duke.edu/catalog/DUKE001199469>). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1975, ISBN: 0155037560). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2013, ISBN: 9780495915423. Fred S. Kleiner, Christin J. Mamiya, Richard G. Tansey ("Gardnerâ s art through the ages," 2001, ISBN: 0155083155). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2016, ISBN: 9781285837840). Fred S. Kleiner, Christin J. Mamiya ("Gardnerâ s art through the ages," 2005, ISBN: 0534640958). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1970, ISBN: 0155037528). Helen Gardner, Richard G. Tansey, Fred S. Kleiner ("Gardnerâ s Art through the ages," 1996, ISBN: 0155011413). Helen Gardner, Horst de la Croix, Richard G. Tansey, Diane Kirkpatrick ("Gardnerâ s Art through the ages," 1991, ISBN: 0155037692). Helen Gardner, Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2009, ISBN: 9780495093077). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2007, ISBN: 0131934554). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2011, ISBN: 9780205685172). H. W. Janson, Anthony F. Janson ("History of Art," 2001, ISBN: 0810934469). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1986, ISBN: 013389388). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1977, ISBN: 0810910527). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1969, <https://find.library.duke.edu/catalog/DUKE000005734>). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1963, <https://find.library.duke.edu/catalog/DUKE001521852>). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1991, ISBN: 0810934019). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1995, ISBN: 0810934213).
Augmented Regression with General Online data (ARGO) for accurate estimation of influenza epidemics in United States on national level, regional level and state level. It replicates the method introduced in paper Yang, S., Santillana, M. and Kou, S.C. (2015) <doi:10.1073/pnas.1515373112>; Ning, S., Yang, S. and Kou, S.C. (2019) <doi:10.1038/s41598-019-41559-6>; Yang, S., Ning, S. and Kou, S.C. (2021) <doi:10.1038/s41598-021-83084-5>.
Create awesome Bootstrap 4 dashboards powered by Argon'.
API for using episensr', Basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both. See <https://cran.r-project.org/package=episensr>.
Using this package, you can fit a random effects model using either the hierarchical credibility model, a combination of the hierarchical credibility model with a generalized linear model or a Tweedie generalized linear mixed model. See Campo, B.D.C. and Antonio, K. (2023) <doi:10.1080/03461238.2022.2161413>.