Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates the first-exposure effect (FEE) using a one-inflated positive Poisson model, or a one-inflated zero-truncated negative binomial model. In addition, estimates the marginal FEE, and standard errors for the FEE and marginal FEE.
Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm. For a manual on how to use FDboost', see Brockhaus, Ruegamer, Greven (2017) <doi:10.18637/jss.v094.i10>.
Compute energy fluxes in trophic networks, from resources to their consumers, and can be applied to systems ranging from simple two-species interactions to highly complex food webs. It implements the approach described in Gauzens et al. (2017) <doi:10.1101/229450> to calculate energy fluxes, which are also used to calculate equilibrium stability.
This package provides a study based on the screened selection design (SSD) is an exploratory phase II randomized trial with two or more arms but without concurrent control. The primary aim of the SSD trial is to pick a desirable treatment arm (e.g., in terms of the median survival time) to recommend to the subsequent randomized phase IIb (with the concurrent control) or phase III. Though The survival endpoint is often encountered in phase II trials, the existing SSD methods cannot deal with the survival endpoint. Furthermore, the existing SSD wonâ t control the type I error rate. The proposed designs can â partiallyâ control or provide the empirical type I error/false positive rate by an optimal algorithm (implemented by the optimal() function) for each arm. All the design needed components (sample size, operating characteristics) are supported.
This package implements instrumental variable estimators for 2^K factorial experiments with noncompliance.
Data-driven fMRI denoising with projection scrubbing (Pham et al (2022) <doi:10.1016/j.neuroimage.2023.119972>). Also includes routines for DVARS (Derivatives VARianceS) (Afyouni and Nichols (2018) <doi:10.1016/j.neuroimage.2017.12.098>), motion scrubbing (Power et al (2012) <doi:10.1016/j.neuroimage.2011.10.018>), aCompCor (anatomical Components Correction) (Muschelli et al (2014) <doi:10.1016/j.neuroimage.2014.03.028>), detrending, and nuisance regression. Projection scrubbing is also applicable to other outlier detection tasks involving high-dimensional data.
Calculate numerical asymptotic distribution functions of likelihood ratio statistics for fractional unit root tests and tests of cointegration rank. For these distributions, the included functions calculate critical values and P-values used in unit root tests, cointegration tests, and rank tests in the Fractionally Cointegrated Vector Autoregression (FCVAR) model. The functions implement procedures for tests described in the following articles: Johansen, S. and M. Ã . Nielsen (2012) <doi:10.3982/ECTA9299>, MacKinnon, J. G. and M. Ã . Nielsen (2014) <doi:10.1002/jae.2295>.
Real capture frequencies will be fitted to various distributions which provide the basis of estimating population sizes, their standard error, and symmetric as well as asymmetric confidence intervalls.
The penalized and non-penalized Minorize-Maximization (MM) method for frailty models to fit the clustered data, multi-event data and recurrent data. Least absolute shrinkage and selection operator (LASSO), minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalized functions are implemented. All the methods are computationally efficient. These general methods are proposed based on the following papers, Huang, Xu and Zhou (2022) <doi:10.3390/math10040538>, Huang, Xu and Zhou (2023) <doi:10.1177/09622802221133554>.
This package provides tools to support systematic and reproducible workflows for both stationary and nonstationary flood frequency analysis, with applications extending to other hydroclimate extremes, such as precipitation frequency analysis. This package implements the FFA framework proposed by Vidrio- Sahagún et al. (2024) <doi:10.1016/j.envsoft.2024.105940>, originally developed in MATLAB', now adapted for the R environment. This work was funded by the Flood Hazard Identification and Mapping Program of Environment and Climate Change Canada, as well as the Canada Research Chair (Tier 1) awarded to Dr. Pietroniro.
Create Frequently Asked Questions page for Shiny application.
Access and retrieve vocabulary data Finto API <https://api.finto.fi/>, which is a centralized service for interoperable thesauri, ontology and classification schemes for different subject areas.
The main goal of this package is drawing the membership function of the fuzzy p-value which is defined as a fuzzy set on the unit interval for three following problems: (1) testing crisp hypotheses based on fuzzy data, see Filzmoser and Viertl (2004) <doi:10.1007/s001840300269>, (2) testing fuzzy hypotheses based on crisp data, see Parchami et al. (2010) <doi:10.1007/s00362-008-0133-4>, and (3) testing fuzzy hypotheses based on fuzzy data, see Parchami et al. (2012) <doi:10.1007/s00362-010-0353-2>. In all cases, the fuzziness of data or / and the fuzziness of the boundary of null fuzzy hypothesis transported via the p-value function and causes to produce the fuzzy p-value. If the p-value is fuzzy, it is more appropriate to consider a fuzzy significance level for the problem. Therefore, the comparison of the fuzzy p-value and the fuzzy significance level is evaluated by a fuzzy ranking method in this package.
This package provides a small utility which wraps Rscript and provides access to all R functions from the shell.
Estimates Filtered Monotonic Polynomial IRT Models as described by Liang and Browne (2015) <DOI:10.3102/1076998614556816>.
FastGit <https://doc.fastgit.org/> works like a mirror of GitHub to make significant acceleration. fgitR is a package to do git operation with FastGit automatically.
This package provides methods for computing and visualizing wildfire ignition exposure and directional vulnerability that are published in a series of scientific publications are automated by the functions in this package. See Beverly et al. (2010) <doi:10.1071/WF09071>, Beverly et al. (2021) <doi:10.1007/s10980-020-01173-8>, and Beverly and Forbes (2023) <doi:10.1007/s11069-023-05885-3> for background and methodology.
Infrastrcture for creating rich, dynamic web content using R scripts while maintaining very fast response time.
This package implements methods for calibrating an aggregated functional data model using wavelets or splines. Each aggregated curve is modeled as a linear combination of component functions and known weights. The component functions are estimated using wavelets or splines. The package is based on dos Santos Sousa (2024) <doi:10.1515/mcma-2023-2016> and Saraiva and Dias (2009) <doi:10.47749/T/UNICAMP.2009.471073>.
FS-DAM performs feature extraction through latent variables identification. Implementation is based on autoencoders with monotonicity and orthogonality constraints.
Frequentist assisted by Bayes (FAB) confidence interval construction. See Adaptive multigroup confidence intervals with constant coverage by Yu and Hoff <DOI:10.1093/biomet/asy009> and Exact adaptive confidence intervals for linear regression coefficients by Hoff and Yu <DOI:10.1214/18-EJS1517>.
In competing risks regression, the proportional subdistribution hazards (PSH) model is popular for its direct assessment of covariate effects on the cumulative incidence function. This package allows for both penalized and unpenalized PSH regression in linear time using a novel forward-backward scan. Penalties include Ridge, Lease Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Plus (MCP), and elastic net <doi: 10.32614/RJ-2021-010>.
Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft- thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.
Estimate parameters of univariate probability distributions with maximum likelihood and Bayesian methods.