Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Build display tables easily by extending the functionality of the flextable package. Features include spanning header, grouping rows, parsing markdown and so on.
It implements an improved and computationally faster version of the original Stepwise Gaussian Graphical Algorithm for estimating the Omega precision matrix from high-dimensional data. Zamar, R., Ruiz, M., Lafit, G. and Nogales, J. (2021) <doi:10.52933/jdssv.v1i2.11>.
This package implements the AdaptiveImpute matrix completion algorithm of Intelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion <doi:10.1080/10618600.2018.1518238> as well as the specialized variant of Co-Factor Analysis of Citation Networks <doi:10.1080/10618600.2024.2394464>. AdaptiveImpute is useful for embedding sparsely observed matrices, often out performs competing matrix completion algorithms, and self-tunes its hyperparameter, making usage easy.
R implementations of standard financial engineering codes; vanilla option pricing models such as Black-Scholes, Bachelier, CEV, and SABR.
Fits the lifespan datasets of biological systems such as yeast, fruit flies, and other similar biological units with well-known finite mixture models introduced by Farewell V. (1982) <doi:10.2307/2529885> and Al-Hussaini et al. (2000) <doi:10.1080/00949650008812033>. Estimates parameter space fitting of a lifespan dataset with finite mixtures of parametric distributions. Computes the following tasks; 1) Estimates parameter space of the finite mixture model by implementing the expectation maximization (EM) algorithm. 2) Finds a sequence of four goodness-of-fit measures consist of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS), and log-likelihood (log-likelihood) statistics. 3)The initial values is determined by k-means clustering.
This package provides functions for creating, analyzing, and visualizing event study models using fixed-effects regression. Supports staggered adoption, multiple confidence intervals, flexible clustering, and panel/time transformations in a simple workflow.
This package provides a bundle of analytics tools for fisheries scientists. A shiny R App is included for a no-code solution for retrieval, analysis, and visualization.
Implementation of the fast univariate inference approach (Cui et al. (2022) <doi:10.1080/10618600.2021.1950006>, Loewinger et al. (2024) <doi:10.7554/eLife.95802.2>, Xin et al. (2025)) for fitting functional mixed models. User guides and Python package information can be found at <https://github.com/gloewing/photometry_FLMM>.
This package provides a flexible set of tools for matching two un-linked data sets. fedmatch allows for three ways to match data: exact matches, fuzzy matches, and multi-variable matches. It also allows an easy combination of these three matches via the tier matching function.
Interactive data visualization for data practitioners. flourishcharts allows users to visualize their data using Flourish graphs that are grounded in data storytelling principles. Users can create racing bar & line charts, as well as other interactive elements commonly found in D3 graphics, easily in R and Python'. The package relies on an enterprise API provided by Flourish', a data visualization platform <https://developers.flourish.studio/api/introduction/>.
This package creates a full rank matrix out of a given matrix. The intended use is for one-hot encoded design matrices that should be used in linear models to ensure that significant associations can be correctly interpreted. However, fullRankMatrix can be applied to any matrix to make it full rank. It removes columns with only 0's, merges duplicated columns and discovers linearly dependent columns and replaces them with linearly independent columns that span the space of the original columns. Columns are renamed to reflect those modifications. This results in a full rank matrix that can be used as a design matrix in linear models. The algorithm and some functions are inspired by Kuhn, M. (2008) <doi:10.18637/jss.v028.i05>.
Fuzzy set ordination is a multivariate analysis used in ecology to relate the composition of samples to possible explanatory variables. While differing in theory and method, in practice, the use is similar to constrained ordination. The package contains plotting and summary functions as well as the analyses.
This package provides a suite of functions to test for Functional Measurement Invariance (FMI) between two groups. Implements hierarchical permutation tests for configural, metric, and scalar invariance, adapting concepts from Multi-Group Confirmatory Factor Analysis (MGCFA) to functional data. Methods are based on concepts from: Meredith, W. (1993) <doi:10.1007/BF02294825>,5 Yao, F., Müller, H. G., & Wang, J. L. (2005) <doi:10.1198/016214504000001745>, and Lee, K. Y., & Li, L. (2022) <doi:10.1111/rssb.12471>.
Perform Maximum Likelihood Factor analysis on a covariance matrix or data matrix.
This package provides tools for fluctuations analysis of mutant cells counts. Main reference is A. Mazoyer, R. Drouilhet, S. Despreaux and B. Ycart (2017) <doi:10.32614/RJ-2017-029>.
Perform factorial analysis with a menu and draw graphs interactively thanks to FactoMineR and a Shiny application.
An R API to MET Norway's Frost API <https://frost.met.no/index.html> to retrieve data as data frames. The Frost API, and the underlying data, is made available by the Norwegian Meteorological Institute (MET Norway). The data and products are distributed under the Norwegian License for Open Data 2.0 (NLOD) <https://data.norge.no/nlod/en/2.0> and Creative Commons 4.0 <https://creativecommons.org/licenses/by/4.0/>.
Design and simulate fuzzy logic systems using Type-1 and Interval Type-2 Fuzzy Logic. This toolkit includes with graphical user interface (GUI) and an adaptive neuro- fuzzy inference system (ANFIS). This toolkit is a continuation from the previous package ('FuzzyToolkitUoN'). Produced by the Intelligent Modelling & Analysis Group (IMA) and Lab for UnCertainty In Data and decision making (LUCID), University of Nottingham. A big thank you to the many people who have contributed to the development/evaluation of the toolbox. Please cite the toolbox and the corresponding paper <doi:10.1109/FUZZ48607.2020.9177780> when using it. More related papers can be found in the NEWS.
This tree-based method deals with high dimensional longitudinal data with correlated features through the use of a piecewise random effect model. FREE tree also exploits the network structure of the features, by first clustering them using Weighted Gene Co-expression Network Analysis ('WGCNA'). It then conducts a screening step within each cluster of features and a selecting step among the surviving features, which provides a relatively unbiased way to do feature selection. By using dominant principle components as regression variables at each leaf and the original features as splitting variables at splitting nodes, FREE tree delivers easily interpretable results while improving computational efficiency.
Model-based clustering of multivariate continuous data using Bayesian mixtures of factor analyzers (Papastamoulis (2019) <DOI:10.1007/s11222-019-09891-z> (2018) <DOI:10.1016/j.csda.2018.03.007>). The number of clusters is estimated using overfitting mixture models (Rousseau and Mengersen (2011) <DOI:10.1111/j.1467-9868.2011.00781.x>): suitable prior assumptions ensure that asymptotically the extra components will have zero posterior weight, therefore, the inference is based on the ``alive components. A Gibbs sampler is implemented in order to (approximately) sample from the posterior distribution of the overfitting mixture. A prior parallel tempering scheme is also available, which allows to run multiple parallel chains with different prior distributions on the mixture weights. These chains run in parallel and can swap states using a Metropolis-Hastings move. Eight different parameterizations give rise to parsimonious representations of the covariance per cluster (following Mc Nicholas and Murphy (2008) <DOI:10.1007/s11222-008-9056-0>). The model parameterization and number of factors is selected according to the Bayesian Information Criterion. Identifiability issues related to label switching are dealt by post-processing the simulated output with the Equivalence Classes Representatives algorithm (Papastamoulis and Iliopoulos (2010) <DOI:10.1198/jcgs.2010.09008>, Papastamoulis (2016) <DOI:10.18637/jss.v069.c01>).
Has two functions to help with calculating feature selection stability. Lump is a function that groups subset vectors into a dataframe, and adds NA to shorter vectors so they all have the same length. ASM is a function that takes a dataframe of subset vectors and the original vector of features as inputs, and calculates the Stability of the feature selection. The calculation for asm uses the Adjusted Stability Measure proposed in: Lustgarten', Gopalakrishnan', & Visweswaran (2009)<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815476/>.
The aim of the package is to provide some basic functions for doing statistics with trapezoidal fuzzy numbers. In particular, the package contains several functions for simulating trapezoidal fuzzy numbers, as well as for calculating some central tendency measures (mean and two types of median), some scale measures (variance, ADD, MDD, Sn, Qn, Tn and some M-estimators) and one diversity index and one inequality index. Moreover, functions for calculating the 1-norm distance, the mid/spr distance and the (phi,theta)-wabl/ldev/rdev distance between fuzzy numbers are included, and a function to calculate the value phi-wabl given a sample of trapezoidal fuzzy numbers.
Yet another implementation of the Random Forest method by Breiman (2001) <doi:10.1023/A:1010933404324>, written in Rust and tailored towards stability, correctness, efficiency and scalability on modern multi-core machines. Handles both classification and regression, as well as provides permutation feature importance via a novel, highly optimised algorithm.
Efficient computation of the Liu regression coefficient paths, Liu-related statistics and information criteria for a grid of the regularization parameter. The computations are based on the C++ library Armadillo through the R package Rcpp'.