Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Aids in analysing data from a food frequency questionnaire known as the Harvard Service Food Frequency Questionnaire (HSFFQ). Functions from this package use answers from the HSFFQ to generate estimates of daily consumed micronutrients, calories, macronutrients on an individual level. The package also calculates food quotients on individual and group levels. Foodquotient calculation is an often tedious step in the calculation of total human energy expenditure (TEE) using the doubly labeled water method, which is the gold standard for measuring TEE.
Pairwise Hamming distances are computed between the rows of a binary (0/1) matrix using highly optimized C code. The input is an integer matrix where each row represents a binary feature vector and returns a symmetric integer matrix of pairwise distances. Internally, rows are bit-packed into 64-bit words for fast XOR-based comparisons, with hardware-accelerated popcount operations to count differences. OpenMP parallelization ensures efficient performance for large matrices.
This package implements the statistic FAVA, an Fst-based Assessment of Variability across vectors of relative Abundances, as well as a suite of helper functions which enable the visualization and statistical analysis of relative abundance data. The FAVA R package accompanies the paper, â Quantifying compositional variability in microbial communities with FAVAâ by Morrison, Xue, and Rosenberg (2025) <doi:10.1073/pnas.2413211122>.
R shiny app to perform data analysis and visualization for the Fully Automated Senescence Test (FAST) workflow.
This package implements the Mode Jumping Markov Chain Monte Carlo algorithm described in <doi:10.1016/j.csda.2018.05.020> and its Genetically Modified counterpart described in <doi:10.1613/jair.1.13047> as well as the sub-sampling versions described in <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging.
This package provides a set of functions that facilitate basic data manipulation and cleaning for statistical analysis including functions for finding and fixing duplicate rows and columns, missing values, outliers, and special characters in column and row names and functions for checking data consistency, distribution, quality, reliability, and structure.
This package provides a collection of datasets essential for functional genomic analysis. Gene names, gene positions, cytoband information, sourced from Ensembl and phenotypes association graph prepared from GWAScatalog are included. Data is available in both GRCh37 and 38 builds. These datasets facilitate a wide range of genomic studies, including the identification of genetic variants, exploration of genomic features, and post-GWAS functional analysis.
Estimate a FAVAR model by a Bayesian method, based on Bernanke et al. (2005) <DOI:10.1162/0033553053327452>.
This package provides a wrapper for the API of the Danish Parliament. It makes it possible to get data from the API easily into a data frame. Learn more at <http://www.ft.dk/dokumenter/aabne_data>.
Analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments using nonlinear mixed-effects regression models and analysis of the results. FRApp is not limited to the analysis of FRAP experiments only. Any nonlinear mixed-effects models with an asymptotic exponential functional relationship to hierarchical data in various domains can be fitted. The analysis of data available in the package is presented in Di Credico, G., Pelucchi, S., Pauli, F. et al. (2025) <doi:10.1038/s41598-025-87154-w>.
Function factories are functions that make functions. They can be confusing to construct. Straightforward techniques can produce functions that are fragile or hard to understand. While more robust techniques exist to construct function factories, those techniques can be confusing. This package is designed to make it easier to construct function factories.
Adds flow maps to ggplot2 plots. The flow maps consist of ggplot2 layers which visualize the nodes as circles and the bilateral flows between the nodes as bidirectional half-arrows.
Create a flip over style Flash Card with desired data frame for Shiny application.
Two Gray Level Co-occurrence Matrix ('GLCM') implementations are included: The first is a fast GLCM feature texture computation based on Python Numpy arrays ('Github Repository, <https://github.com/tzm030329/GLCM>). The second is a fast GLCM RcppArmadillo implementation which is parallelized (using OpenMP') with the option to return all GLCM features at once. For more information, see "Artifact-Free Thin Cloud Removal Using Gans" by Toizumi Takahiro, Zini Simone, Sagi Kazutoshi, Kaneko Eiji, Tsukada Masato, Schettini Raimondo (2019), IEEE International Conference on Image Processing (ICIP), pp. 3596-3600, <doi:10.1109/ICIP.2019.8803652>.
Connection to the Fitbit Web API <https://dev.fitbit.com/build/reference/web-api/> by including ggplot2 Visualizations, Leaflet and 3-dimensional Rayshader Maps. The 3-dimensional Rayshader Map requires the installation of the CopernicusDEM R package which includes the 30- and 90-meter elevation data.
Providing classes, methods, and functions to deal with financial networks. Users can easily store information about both physical and legal persons by using pre-made classes that are studied for integration with scraping packages such as rvest and RSelenium'. Moreover, the package assists in creating various types of financial networks depending on the type of relation between its units depending on the relation under scrutiny (ownership, board interlocks, etc.), the desired tie type (valued or binary), and renders them in the most common formats (adjacency matrix, incidence matrix, edge list, igraph', network'). There are also ad-hoc functions for the Fiedler value, global network efficiency, and cascade-failure analysis.
The FisherEM algorithm, proposed by Bouveyron & Brunet (2012) <doi:10.1007/s11222-011-9249-9>, is an efficient method for the clustering of high-dimensional data. FisherEM models and clusters the data in a discriminative and low-dimensional latent subspace. It also provides a low-dimensional representation of the clustered data. A sparse version of Fisher-EM algorithm is also provided.
An interface to the Fish Tree of Life API to download taxonomies, phylogenies, fossil calibrations, and diversification rate information for ray-finned fishes.
These functions were developed to support statistical analysis on functional covariance operators. The package contains functions to: - compute 2-Wasserstein distances between Gaussian Processes as in Masarotto, Panaretos & Zemel (2019) <doi:10.1007/s13171-018-0130-1>; - compute the Wasserstein barycenter (Frechet mean) as in Masarotto, Panaretos & Zemel (2019) <doi:10.1007/s13171-018-0130-1>; - perform analysis of variance testing procedures for functional covariances and tangent space principal component analysis of covariance operators as in Masarotto, Panaretos & Zemel (2022) <arXiv:2212.04797>. - perform a soft-clustering based on the Wasserstein distance where functional data are classified based on their covariance structure as in Masarotto & Masarotto (2023) <doi:10.1111/sjos.12692>.
This package creates a HTML widget which displays the results of searching for a pattern in files in a given folder. The results can be viewed in the RStudio viewer pane, included in a R Markdown document or in a Shiny application. Also provides a Shiny application allowing to run this widget and to navigate in the files found by the search. Instead of creating a HTML widget, it is also possible to get the results of the search in a tibble'. The search is performed by the grep command-line utility.
This package provides optimized C++ code for computing the partial Receiver Operating Characteristic (ROC) test used in niche and species distribution modeling. The implementation follows Peterson et al. (2008) <doi:10.1016/j.ecolmodel.2007.11.008>. Parallelization via OpenMP was implemented with assistance from the DeepSeek Artificial Intelligence Assistant (<https://www.deepseek.com/>).
Allows user to obtain subsets of columns of data or vectors within a list. These subsets will match the original data in terms of average and variation, but have a consistent length of data per column. It is intended for use on automated data generation which may not always output the same N per replicate or sample.
It implements an improved and computationally faster version of the original Stepwise Gaussian Graphical Algorithm for estimating the Omega precision matrix from high-dimensional data. Zamar, R., Ruiz, M., Lafit, G. and Nogales, J. (2021) <doi:10.52933/jdssv.v1i2.11>.
Around 10% of almost any predictive modeling project is spent in predictive modeling, funModeling and the book Data Science Live Book (<https://livebook.datascienceheroes.com/>) are intended to cover remaining 90%: data preparation, profiling, selecting best variables dataViz', assessing model performance and other functions.