Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Set of functions designed to solve inverse problems. The direct problem is used to calculate a cost function to be minimized. Here are listed some papers using Inverse Problems solvers and sensitivity analysis: (Jader Lugon Jr.; Antonio J. Silva Neto 2011) <doi:10.1590/S1678-58782011000400003>. (Jader Lugon Jr.; Antonio J. Silva Neto; Pedro P.G.W. Rodrigues 2008) <doi:10.1080/17415970802082864>. (Jader Lugon Jr.; Antonio J. Silva Neto; Cesar C. Santana 2008) <doi:10.1080/17415970802082922>.
Maximum likelihood estimation, random values generation, density computation and other functions for the exponential-Poisson generalised exponential-Poisson and Poisson-exponential distributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). "Poisson-exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128--144. <doi:10.1080/02664763.2016.1268571>. Louzada F., Ramos, P. L. and Ferreira, H. P. (2020). "Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence". Communications in Statistics--Simulation and Computation, 49(4): 1024--1043. <doi:10.1080/03610918.2018.1491988>. Barreto-Souza W. and Cribari-Neto F. (2009). "A generalization of the exponential-Poisson distribution". Statistics and Probability Letters, 79(24): 2493--2500. <doi:10.1016/j.spl.2009.09.003>.
Reference datasets commonly used in the geosciences. These include standard atomic weights of the elements, a periodic table, a list of minerals including their abbreviations and chemistry, geochemical data of reservoirs (primitive mantle, continental crust, mantle, basalts, etc.), decay constants and isotopic ratios frequently used in geochronology, color codes of the chronostratigraphic chart. In addition, the package provides functions for basic queries of atomic weights, the list of minerals, and chronostratigraphic chart colors. All datasets are fully referenced, and a BibTeX file containing the references is included.
Enables calculation of image textures (Haralick 1973) <doi:10.1109/TSMC.1973.4309314> from grey-level co-occurrence matrices (GLCMs). Supports processing images that cannot fit in memory.
Preview what a ggplot2 plot would look like if you save it to a file. Attach picture dimensions as a canvas() element and get an instant preview. These dimensions will then be used when you save the plot.
Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 <DOI:10.1111/ANZS.12241>.
This package provides a zero-inflated quasi-Poisson factor model to display similarity between samples visually in a low (2 or 3) dimensional space.
Add trendline and confidence interval of linear or nonlinear regression model and show equation to ggplot as simple as possible. For a general overview of the methods used in this package, see Ritz and Streibig (2008) <doi:10.1007/978-0-387-09616-2> and Greenwell and Schubert Kabban (2014) <doi:10.32614/RJ-2014-009>.
This package provides ggplot2 geoms that allow groups of data points to be outlined or highlighted for emphasis. This is particularly useful when working with dense datasets that are prone to overplotting.
This package creates tables suitable for regulatory agency submission by leveraging the gtsummary package as the back end. Tables can be exported to HTML, Word, PDF and more. Highly customized outputs are available by utilizing existing styling functions from gtsummary as well as custom options designed for regulatory tables.
An extension of ggplot2 for creating complex genomic maps. It builds on the power of ggplot2 and tidyverse adding new ggplot2'-style geoms & positions and dplyr'-style verbs to manipulate the underlying data. It implements a layout concept inspired by ggraph and introduces tracks to bring tidiness to the mess that is genomics data.
Firstly, both functions of the univariate Poisson dispersion index (DI) for count data and the univariate exponential variation index (VI) for nonnegative continuous data are performed. Next, other functions of univariate indexes such the binomial dispersion index (DIb), the negative binomial dispersion index (DInb) and the inverse Gaussian variation index (VIiG) are given. Finally, we are computed some multivariate versions of these functions such that the generalized dispersion index (GDI) with its marginal one (MDI) and the generalized variation index (GVI) with its marginal one (MVI) too.
This package provides functions to generate and analyze data for psychology experiments based on the General Recognition Theory.
Applies sequential clustering algorithm to animal location data based on user-defined parameters. Plots interactive cluster maps and provides a summary dataframe with attributes for each cluster commonly used as covariates in subsequent modeling efforts. Additional functions provide individual keyhole markup language plots for quick assessment, and export of global positioning system exchange format files for navigation purposes. Methods can be found at <doi:10.1111/2041-210X.13572>.
Estimates a collection of time-indexed functions under either of Gaussian process (GP) or intrinsic Gaussian Markov random field (iGMRF) prior formulations where a Dirichlet process mixture allows sub-groupings of the functions to share the same covariance or precision parameters. The GP and iGMRF formulations both support any number of additive covariance or precision terms, respectively, expressing either or both of multiple trend and seasonality.
Interface for extra smooth functions including tensor products, neural networks and decision trees.
Implementation of a Bayesian approach for estimating a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter.
This package provides a model building procedure to build parsimonious geoadditive model from a large number of covariates. Continuous, binary and ordered categorical responses are supported. The model building is based on component wise gradient boosting with linear effects, smoothing splines and a smooth spatial surface to model spatial autocorrelation. The resulting covariate set after gradient boosting is further reduced through backward elimination and aggregation of factor levels. The package provides a model based bootstrap method to simulate prediction intervals for point predictions. A test data set of a soil mapping case study in Berne (Switzerland) is provided. Nussbaum, M., Walthert, L., Fraefel, M., Greiner, L., and Papritz, A. (2017) <doi:10.5194/soil-3-191-2017>.
These Rcpp'-based functions compute the efficient score statistics for grouped time-to-event data (Prentice and Gloeckler, 1978), with the optional inclusion of baseline covariates. Functions for estimating the parameter of interest and nuisance parameters, including baseline hazards, using maximum likelihood are also provided. A parallel set of functions allow for the incorporation of family structure of related individuals (e.g., trios). Note that the current implementation of the frailty model (Ripatti and Palmgren, 2000) is sensitive to departures from model assumptions, and should be considered experimental. For these data, the exact proportional-hazards-model-based likelihood is computed by evaluating multiple variable integration. The integration is accomplished using the Cuba library (Hahn, 2005), and the source files are included in this package. The maximization process is carried out using Brent's algorithm, with the C++ code file from John Burkardt and John Denker (Brent, 2002).
Sankey and alluvial diagrams visualise flows of quantities across stages in stacked bars. This package makes it easy to create such diagrams using ggplot2'.
This package provides a convenient interface with the OpenAI ChatGPT API <https://openai.com/api>. gptr allows you to interact with ChatGPT', a powerful language model, for various natural language processing tasks. The gptr R package makes talking to ChatGPT in R super easy. It helps researchers and data folks by simplifying the complicated stuff, like asking questions and getting answers. With gptr', you can use ChatGPT in R without any hassle, making it simpler for everyone to do cool things with language!
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
Solves goal programming problems of the weighted and lexicographic type, as well as combinations of the two, as described by Ignizio (1983) <doi:10.1016/0305-0548(83)90003-5>. Allows for a simple human-readable input describing the problem as a series of equations. Relies on the lpSolve package to solve the underlying linear optimisation problem.
This package provides functions and a graphical user interface for graphical described multiple test procedures.