Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Kernel regularized least squares, also known as kernel ridge regression, is a flexible machine learning method. This package implements this method by providing a smooth term for use with mgcv and uses random sketching to facilitate scalable estimation on large datasets. It provides additional functions for calculating marginal effects after estimation and for use with ensembles ('SuperLearning'), double/debiased machine learning ('DoubleML'), and robust/clustered standard errors ('sandwich'). Chang and Goplerud (2024) <doi:10.1017/pan.2023.27> provide further details.
Recursive partitioning based on (generalized) linear mixed models (GLMMs) combining lmer()/glmer() from lme4 and lmtree()/glmtree() from partykit'. The fitting algorithm is described in more detail in Fokkema, Smits, Zeileis, Hothorn & Kelderman (2018; <DOI:10.3758/s13428-017-0971-x>). For detecting and modeling subgroups in growth curves with GLMM trees see Fokkema & Zeileis (2024; <DOI:10.3758/s13428-024-02389-1>).
Create groups of ggplot2 layers that can be easily migrated from one plot to another, reducing redundant code and improving the ability to format many plots that draw from the same source ggpacket layers.
Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 <DOI:10.1111/ANZS.12241>.
Compute bivariate dependence measures and perform bivariate competing risks analysis under the generalized Farlie-Gumbel-Morgenstern (FGM) copula. See Shih and Emura (2018) <doi:10.1007/s00180-018-0804-0> and Shih and Emura (2019) <doi:10.1007/s00362-016-0865-5> for details.
This package provides a pipeline with high specificity and sensitivity in extracting proteins from the RefSeq database (National Center for Biotechnology Information). Manual identification of gene families is highly time-consuming and laborious, requiring an iterative process of manual and computational analysis to identify members of a given family. The pipelines implements an automatic approach for the identification of gene families based on the conserved domains that specifically define that family. See Die et al. (2018) <doi:10.1101/436659> for more information and examples.
We implement and extend the Dividing Local Gaussian Process algorithm by Lederer et al. (2020) <doi:10.48550/arXiv.2006.09446>. Its main use case is in online learning where it is used to train a network of local GPs (referred to as tree) by cleverly partitioning the input space. In contrast to a single GP, GPTreeO is able to deal with larger amounts of data. The package includes methods to create the tree and set its parameter, incorporating data points from a data stream as well as making joint predictions based on all relevant local GPs.
Unsupervised Clustering and Meta-analysis using Gaussian Mixture Copula Models.
Fast algorithms for robust estimation with large samples of multivariate observations. Estimation of the geometric median, robust k-Gmedian clustering, and robust PCA based on the Gmedian covariation matrix.
This package provides tools for applying the Bayesian Gower agreement methodology (presented in the package vignette) to nominal or ordinal data. The framework can accommodate any number of units, any number of coders, and missingness; and can handle both one-way and two-way random study designs. Influential units and/or coders can be identified easily using leave-one-out statistics.
This package provides functions for performing polygon geometry with grid grobs. This allows complex shapes to be defined by combining simpler shapes.
This package performs test procedures for general hypothesis testing problems for four multivariate coefficients of variation (Ditzhaus and Smaga, 2023 <arXiv:2301.12009>). We can verify the global hypothesis about equality as well as the particular hypotheses defined by contrasts, e.g., we can conduct post hoc tests. We also provide the simultaneous confidence intervals for contrasts.
Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.
This package provides a comprehensive interface for Google Gemini API, enabling users to access and utilize Gemini Large Language Model (LLM) functionalities directly from R. This package facilitates seamless integration with Google Gemini, allowing for advanced language processing, text generation, and other AI-driven capabilities within the R environment. For more information, please visit <https://ai.google.dev/docs/gemini_api_overview>.
This package provides tools to set up, train, store, load, investigate and analyze generative neural networks. In particular, functionality for generative moment matching networks is provided.
Provide specialized ggplot2 layers and scales for spatial uncertainty visualization, including bivariate choropleth maps, pixel maps, glyph maps, and exceedance probability maps.
This package provides methods for model selection, estimation, inference, and simulation for the multilevel factor model, based on the principal component estimation and generalised canonical correlation approach. Details can be found in "Generalised Canonical Correlation Estimation of the Multilevel Factor Model." Lin and Shin (2025) <doi:10.2139/ssrn.4295429>.
Extend ggplot2 facets to panel layouts arranged in a grid with ragged edges. facet_ragged_rows() groups panels into rows that can vary in length, facet_ragged_cols() does the same but for columns. These can be useful, for example, to represent nested or partially crossed relationships between faceting variables.
The gasanalyzer R package offers methods for importing, preprocessing, and analyzing data related to photosynthetic characteristics (gas exchange, chlorophyll fluorescence and isotope ratios). It translates variable names into a standard format, and can recalculate derived, physiological quantities using imported or predefined equations. The package also allows users to assess the sensitivity of their results to different assumptions used in the calculations. See also Tholen (2024) <doi:10.1093/aobpla/plae035>.
Set of functions designed to solve inverse problems. The direct problem is used to calculate a cost function to be minimized. Here are listed some papers using Inverse Problems solvers and sensitivity analysis: (Jader Lugon Jr.; Antonio J. Silva Neto 2011) <doi:10.1590/S1678-58782011000400003>. (Jader Lugon Jr.; Antonio J. Silva Neto; Pedro P.G.W. Rodrigues 2008) <doi:10.1080/17415970802082864>. (Jader Lugon Jr.; Antonio J. Silva Neto; Cesar C. Santana 2008) <doi:10.1080/17415970802082922>.
The functionality provided by this package is an expansion of the code of the statebins package, created by B. Rudis (2022), <doi:10.32614/CRAN.package.statebins>. It allows for the creation of square choropleths for the entire world, provided an appropriate specified grid is supplied.
The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor's similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.
Identifies implausible anthropometric (e.g., height, weight) measurements in irregularly spaced longitudinal datasets, such as those from electronic health records.
Analyzes joint attribute data (e.g., species abundance) that are combinations of continuous and discrete data with Gibbs sampling. Full model and computation details are described in Clark et al. (2018) <doi:10.1002/ecm.1241>.