Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Shiny application for the analysis of groundwater monitoring data, designed to work with simple time-series data for solute concentration and ground water elevation, but can also plot non-aqueous phase liquid (NAPL) thickness if required. Also provides the import of a site basemap in GIS shapefile format.
Interact with Google Cloud Storage <https://cloud.google.com/storage/> API in R. Part of the cloudyr <https://cloudyr.github.io/> project.
Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.
This package provides tools to streamline the extraction, processing, and visualization of Computable General Equilibrium (CGE) results from GTAP models. Designed for compatibility with both .har and .sl4 files, the package enables users to automate data preparation, apply mapping metadata, and generate high-quality plots and summary tables with minimal coding. GTAPViz supports flexible export options (e.g., Text, CSV, Stata', or Excel formats). This facilitates efficient post-simulation analysis for economic research and policy reporting. Includes helper functions to filter, format, and customize outputs with reproducible styling.
This package provides a mechanism to plot a Google Map from R and overlay it with shapes and markers. Also provides access to Google Maps APIs, including places, directions, roads, distances, geocoding, elevation and timezone.
Discrete scales for the colorblind-friendly Okabe-Ito palette, including color', fill', and edge_colour'. ggokabeito provides ggplot2 and ggraph scales to easily use the Okabe-Ito palette in your data visualizations.
River hydrograph separation and daily runoff time series analysis. Provides various filters to separate baseflow and quickflow. Implements advanced separation technique by Rets et al. (2022) <doi:10.1134/S0097807822010146> which involves meteorological data to reveal genetic components of the runoff: ground, rain, thaw and spring (seasonal thaw). High-performance C++17 computation, annually aggregated variables, statistical testing and numerous plotting functions for high-quality visualization.
Data sets used in the book Marra and Radice (2025, ISBN:9781032973111) "Copula Additive Distributional Regression Using R", for illustrating the fitting of various joint (and univariate) regression models, with several types of covariate effects, in the presence of equations errors association.
This package provides a set of geometries to make line plots a little bit nicer. Use along with ggplot2 to: - Improve the clarity of line plots with many overlapping lines - Draw more realistic worms.
Spline regression, generalized additive models and component-wise gradient boosting utilizing geometrically designed (GeD) splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of generalized (non-)linear models, offering a flexible approach to model complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).
R's sf package ships with self-contained GDAL executables, including a bare bones interface to several GDAL'-related utility programs collectively known as the GDAL utilities'. For each of those utilities, this package provides an R wrapper whose formal arguments closely mirror those of the GDAL command line interface. The utilities operate on data stored in files and typically write their output to other files. Therefore, to process data stored in any of R's more common spatial formats (i.e. those supported by the sf and terra packages), first write them to disk, then process them with the package's wrapper functions before reading the outputted results back into R. GDAL function arguments introduced in GDAL version 3.5.2 or earlier are supported.
This package provides a post-estimation method for categorical response models (CRM). Inputs from objects of class serp(), clm(), polr(), multinom(), mlogit(), vglm() and glm() are currently supported. Available tests include the Hosmer-Lemeshow tests for the binary, multinomial and ordinal logistic regression; the Lipsitz and the Pulkstenis-Robinson tests for the ordinal models. The proportional odds, adjacent-category, and constrained continuation-ratio models are particularly supported at ordinal level. Tests for the proportional odds assumptions in ordinal models are also possible with the Brant and the Likelihood-Ratio tests. Moreover, several summary measures of predictive strength (Pseudo R-squared), and some useful error metrics, including, the brier score, misclassification rate and logloss are also available for the binary, multinomial and ordinal models. Ugba, E. R. and Gertheiss, J. (2018) <http://www.statmod.org/workshops_archive_proceedings_2018.html>.
Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.
This package provides a Gaussian or Student's t copula-based procedure for generating samples from discrete random variables with prescribed correlation matrix and marginal distributions.
Data sets from the book Generalized Linear Models with Examples in R by Dunn and Smyth.
This package provides tools for semantic segmentation of geospatial data using convolutional neural network-based deep learning. Utility functions allow for creating masks, image chips, data frames listing image chips in a directory, and DataSets for use within DataLoaders. Additional functions are provided to serve as checks during the data preparation and training process. A UNet architecture can be defined with 4 blocks in the encoder, a bottleneck block, and 4 blocks in the decoder. The UNet can accept a variable number of input channels, and the user can define the number of feature maps produced in each encoder and decoder block and the bottleneck. Users can also choose to (1) replace all rectified linear unit (ReLU) activation functions with leaky ReLU or swish, (2) implement attention gates along the skip connections, (3) implement squeeze and excitation modules within the encoder blocks, (4) add residual connections within all blocks, (5) replace the bottleneck with a modified atrous spatial pyramid pooling (ASPP) module, and/or (6) implement deep supervision using predictions generated at each stage in the decoder. A unified focal loss framework is implemented after Yeung et al. (2022) <doi:10.1016/j.compmedimag.2021.102026>. We have also implemented assessment metrics using the luz package including F1-score, recall, and precision. Trained models can be used to predict to spatial data without the need to generate chips from larger spatial extents. Functions are available for performing accuracy assessment. The package relies on torch for implementing deep learning, which does not require the installation of a Python environment. Raster geospatial data are handled with terra'. Models can be trained using a Compute Unified Device Architecture (CUDA)-enabled graphics processing unit (GPU); however, multi-GPU training is not supported by torch in R'.
The Genie algorithm (Gagolewski, 2021 <DOI:10.1016/j.softx.2021.100722>) is a robust and outlier-resistant hierarchical clustering method (Gagolewski, Bartoszuk, Cena, 2016 <DOI:10.1016/j.ins.2016.05.003>). This package features its faster and more powerful version. It allows clustering with respect to mutual reachability distances, enabling it to act as a noise point detector or a version of HDBSCAN* that can identify a predefined number of clusters. The package also features an implementation of the Gini and Bonferroni inequality indices, external cluster validity measures (e.g., the normalised clustering accuracy, the adjusted Rand index, the Fowlkes-Mallows index, and normalised mutual information), and internal cluster validity indices (e.g., the Calinski-Harabasz, Davies-Bouldin, Ball-Hall, Silhouette, and generalised Dunn indices). The Python version of genieclust is available via PyPI'.
This package provides a comprehensive suite of genome-wide association study (GWAS) methods specifically designed for biobank-scale data, including but not limited to, robust approaches for time-to-event traits (Li et al., 2025 <doi:10.1038/s43588-025-00864-z>) and ordinal categorical traits (Bi et al., 2021 <doi:10.1016/j.ajhg.2021.03.019>). The package also offers general frameworks for GWAS of any trait type (Bi et al., 2020 <doi:10.1016/j.ajhg.2020.06.003>), while accounting for sample relatedness (Xu et al., 2025 <doi:10.1038/s41467-025-56669-1>) or population structure (Ma et al., 2025 <doi:10.1186/s13059-025-03827-9>). By accurately approximating score statistic distributions using saddlepoint approximation (SPA), these methods can effectively control type I error rates for rare variants and in the presence of unbalanced phenotype distributions. Additionally, the package includes functions for simulating genotype and phenotype data to support research and method development.
Graphical approach provides a useful framework for multiplicity adjustment in clinical trials with multiple endpoints. This package includes statistical methods to optimize sample size over initial weight and transition probability in a graphical approach under a common setting, which is to use marginal power for each endpoint in a trial design. See Zhang, F. and Gou, J. (2023). Sample size optimization for clinical trials using graphical approaches for multiplicity adjustment, Technical Report.
This package provides adaptive association tests for SNP level, gene level and pathway level analyses.
Reconstruction of muscle fibers from image stacks using textural analysis. Includes functions for tracking, smoothing, cleaning, plotting and exporting muscle fibers. Also calculates basic fiber properties (e.g., length and curvature).
Gaussian copula models for count time series. Includes simulation utilities, likelihood approximation, maximum-likelihood estimation, residual diagnostics, and predictive inference. Implements the Time Series Minimax Exponential Tilting (TMET) method, an adaptation of Minimax Exponential Tilting (Botev, 2017) <doi:10.1111/rssb.12162> and the Vecchia-based tilting framework of Cao and Katzfuss (2025) <doi:10.1080/01621459.2025.2546586>. Also provides a linear-cost implementation of the Gewekeâ Hajivassiliouâ Keane (GHK) simulator inspired by Masarotto and Varin (2012) <doi:10.1214/12-EJS721>, and the Continuous Extension (CE) approximation of Nguyen and De Oliveira (2025) <doi:10.1080/02664763.2025.2498502>. The package follows the S3 structure of gcmr', but all code in gctsc was developed independently.
This package provides a unified framework for sparse-group regularization and precision matrix estimation in Gaussian graphical models. It implements multiple sparse-group penalties, including sparse-group lasso, sparse-group adaptive lasso, sparse-group SCAD, and sparse-group MCP, and solves them efficiently using ADMM-based optimization. The package is designed for high-dimensional network inference where both sparsity and group structure are present.
Many tools for Geometric Data Analysis (Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0>), such as MCA variants (Specific Multiple Correspondence Analysis, Class Specific Analysis), many graphical and statistical aids to interpretation (structuring factors, concentration ellipses, inductive tests, bootstrap validation, etc.) and multiple-table analysis (Multiple Factor Analysis, between- and inter-class analysis, Principal Component Analysis and Correspondence Analysis with Instrumental Variables, etc.).