Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Stores small spatial datasets used to teach basic spatial analysis concepts. Datasets are based off of the GeoDa software workbook and data site <https://geodacenter.github.io/data-and-lab/> developed by Luc Anselin and team at the University of Chicago. Datasets are stored as sf objects.
Identifying disease-associated significant SNPs using clustering approach. This package is implementation of method proposed in Xu et al (2019) <DOI:10.1038/s41598-019-50229-6>.
This package provides a GraphQL client, with an R6 interface for initializing a connection to a GraphQL instance, and methods for constructing queries, including fragments and parameterized queries. Queries are checked with the libgraphqlparser C++ parser via the graphql package.
Identifies implausible anthropometric (e.g., height, weight) measurements in irregularly spaced longitudinal datasets, such as those from electronic health records.
An optim-style implementation of the Stochastic Quasi-Gradient Differential Evolution (SQG-DE) optimization algorithm first published by Sala, Baldanzini, and Pierini (2018; <doi:10.1007/978-3-319-72926-8_27>). This optimization algorithm fuses the robustness of the population-based global optimization algorithm "Differential Evolution" with the efficiency of gradient-based optimization. The derivative-free algorithm uses population members to build stochastic gradient estimates, without any additional objective function evaluations. Sala, Baldanzini, and Pierini argue this algorithm is useful for difficult optimization problems under a tight function evaluation budget. This package can run SQG-DE in parallel and sequentially.
In practical applications, the assumptions underlying generalized linear models frequently face violations, including incorrect specifications of the outcome variable's distribution or omitted predictors. These deviations can render the results of standard generalized linear models unreliable. As the sample size increases, what might initially appear as minor issues can escalate to critical concerns. To address these challenges, we adopt a permutation-based inference method tailored for generalized linear models. This approach offers robust estimations that effectively counteract the mentioned problems, and its effectiveness remains consistent regardless of the sample size.
Visualise overlapping time series lines as a heatmap of line density. Provides a ggplot2 statistic implementing the DenseLines algorithm, which "normalizes time series by the arc length to compute accurate densities" (Moritz and Fisher, 2018) <doi:10.48550/arXiv.1808.06019>.
This package provides functions are provided for quantifying evolution and selection on complex traits. The package implements effective handling and analysis algorithms scaled for genome-wide data and calculates a composite statistic, denoted Ghat, which is used to test for selection on a trait. The package provides a number of simple examples for handling and analysing the genome data and visualising the output and results. Beissinger et al., (2018) <doi:10.1534/genetics.118.300857>.
R binds GeoSpark <http://geospark.datasyslab.org/> extending sparklyr <https://spark.rstudio.com/> R package to make distributed geocomputing easier. Sf is a package that provides [simple features] <https://en.wikipedia.org/wiki/Simple_Features> access for R and which is a leading geospatial data processing tool. Geospark R package bring the same simple features access like sf but running on Spark distributed system.
This package provides two functions that generate source code implementing the predict function of fitted glm objects. In this version, code can be generated for either C or Java'. The idea is to provide a tool for the easy and fast deployment of glm predictive models into production. The source code generated by this package implements two function/methods. One of such functions implements the equivalent to predict(type="response"), while the second implements predict(type="link"). Source code is written to disk as a .c or .java file in the specified path. In the case of c, an .h file is also generated.
In computationally demanding data analysis pipelines, the targets R package (2021, <doi:10.21105/joss.02959>) maintains an up-to-date set of results while skipping tasks that do not need to rerun. This process increases speed and increases trust in the final end product. However, it also overwrites old output with new output, and past results disappear by default. To preserve historical output, the gittargets package captures version-controlled snapshots of the data store, and each snapshot links to the underlying commit of the source code. That way, when the user rolls back the code to a previous branch or commit, gittargets can recover the data contemporaneous with that commit so that all targets remain up to date.
Create stunning network experiences powered by the G6 graph visualisation engine JavaScript library <https://g6.antv.antgroup.com/en>. In shiny mode, modify your graph directly from the server function to dynamically interact with nodes and edges. Select your favorite layout among 20 choices. 15 behaviors are available such as interactive edge creation, collapse-expand and brush select. 17 plugins designed to improve the user experience such as a mini-map, toolbars and grid lines. Customise the look and feel of your graph with comprehensive options for nodes, edges and more.
The functionality provided by this package is an expansion of the code of the statebins package, created by B. Rudis (2022), <doi:10.32614/CRAN.package.statebins>. It allows for the creation of square choropleths for the entire world, provided an appropriate specified grid is supplied.
Add mean comparison annotations to a ggplot'. This package provides an easy way to indicate if two or more groups are significantly different in a ggplot'. Usually you do not need to specify the test method, you only need to tell stat_compare() whether you want to perform a parametric test or a nonparametric test, and stat_compare() will automatically choose the appropriate test method based on your data. For comparisons between two groups, the p-value is calculated by t-test (parametric) or Wilcoxon rank sum test (nonparametric). For comparisons among more than two groups, the p-value is calculated by One-way ANOVA (parametric) or Kruskal-Wallis test (nonparametric).
Giac <https://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/en/cascmd_en/cascmd_en.html> is a general purpose symbolic algebra software. It powers the graphical interface Xcas'. This package allows to execute Giac commands in R'.
Implement a coherent and flexible protocol for animal color tagging. GenTag provides a simple computational routine with low CPU usage to create color sequences for animal tag. First, a single-color tag sequence is created from an algorithm selected by the user, followed by verification of the combination uniqueness. Three methods to produce color tag sequences are provided. Users can modify the main function core to allow a wide range of applications.
This package provides curly braces and square brackets in ggplot2 plus matching text. stat_brace() plots braces/brackets to embrace data. stat_bracetext() plots corresponding text, fitting to the braces from stat_brace().
Create plots that combine a phylogeny and frequency dynamics. Phylogenetic input can be a generic adjacency matrix or a tree of class "phylo". Inspired by similar plots in publications of the labs of RE Lenski and JE Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose code this package exploits).
We propose a fully efficient sieve maximum likelihood method to estimate genotype-specific distribution of time-to-event outcomes under a nonparametric model. We can handle missing genotypes in pedigrees. We estimate the time-dependent hazard ratio between two genetic mutation groups using B-splines, while applying nonparametric maximum likelihood estimation to the reference baseline hazard function. The estimators are calculated via an expectation-maximization algorithm.
This package provides functions for matching student-answers to teacher answers for a variety of data types.
Multivariate time series analysis based on Generalized Space-Time Autoregressive Model by Ruchjana et al.(2012) <doi:10.1063/1.4724118>.
This package contains an implementation of an independent component analysis (ICA) for grouped data. The main function groupICA() performs a blind source separation, by maximizing an independence across sources and allows to adjust for varying confounding for user-specified groups. Additionally, the package contains the function uwedge() which can be used to approximately jointly diagonalize a list of matrices. For more details see the project website <https://sweichwald.de/groupICA/>.
We implemented multiple tests based on the restricted mean survival time (RMST) for general factorial designs as described in Munko et al. (2024) <doi:10.1002/sim.10017>. Therefore, an asymptotic test, a groupwise bootstrap test, and a permutation test are incorporated with a Wald-type test statistic. The asymptotic and groupwise bootstrap test take the asymptotic exact dependence structure of the test statistics into account to gain more power. Furthermore, confidence intervals for RMST contrasts can be calculated and plotted and a stepwise extension that can improve the power of the multiple tests is available.
This package implements the generalized Gauss Markov regression, this is useful when both predictor and response have uncertainty attached to them and also when covariance within the predictor, within the response and between the predictor and the response is present. Base on the results published in guide ISO/TS 28037 (2010) <https://www.iso.org/standard/44473.html>.