Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
By binding R functions and the Highcharts <http://www.highcharts.com/> charting library, hpackedbubble package provides a simple way to draw split packed bubble charts.
This package creates and plots 2D and 3D hive plots. Hive plots are a unique method of displaying networks of many types in which node properties are mapped to axes using meaningful properties rather than being arbitrarily positioned. The hive plot concept was invented by Martin Krzywinski at the Genome Science Center (www.hiveplot.net/). Keywords: networks, food webs, linnet, systems biology, bioinformatics.
Wrapper for Stan that offers a number of in-built models to implement a hierarchical Bayesian longitudinal model for repeat observation data. Model choice selects the differential equation that is fit to the observations. Single and multi-individual models are available. O'Brien et al. (2024) <doi:10.1111/2041-210X.14463>.
Enhance package testthat by allowing tests to be attached to the function/object they test. This allows to keep functional and unit test code together.
Hadoop InteractiVE facilitates distributed computing via the MapReduce paradigm through R and Hadoop. An easy to use interface to Hadoop, the Hadoop Distributed File System (HDFS), and Hadoop Streaming is provided.
Kernel density estimation with hexagonal grid for bivariate data. Hexagonal grid has many beneficial properties like equidistant neighbours and less edge bias, making it better for spatial analyses than the more commonly used rectangular grid. Carr, D. B. et al. (1987) <doi:10.2307/2289444>. Diggle, P. J. (2010) <doi:10.1201/9781420072884>. Hill, B. (2017) <https://blog.bruce-hill.com/meandering-triangles>. Jones, M. C. (1993) <doi:10.1007/BF00147776>.
This package provides a visualization suite primarily designed for single-cell RNA-sequencing data analysis applications, but adaptable to other purposes as well. It introduces novel plots to represent two-variable and frequency data and optimizes some commonly used plotting options (e.g., correlation, network, density and alluvial plots) for ease of usage and flexibility.
This package provides a non-parametric test founded upon the principles of the Kolmogorov-Smirnov (KS) test, referred to as the KS Predictive Accuracy (KSPA) test. The KSPA test is able to serve two distinct purposes. Initially, the test seeks to determine whether there exists a statistically significant difference between the distribution of forecast errors, and secondly it exploits the principles of stochastic dominance to determine whether the forecasts with the lower error also reports a stochastically smaller error than forecasts from a competing model, and thereby enables distinguishing between the predictive accuracy of forecasts. KSPA test has been described in : Hassani and Silva (2015) <doi:10.3390/econometrics3030590>.
Implementation of MCMC algorithms to estimate the Hierarchical Dirichlet Process Generalized Linear Model (hdpGLM) presented in the paper Ferrari (2020) Modeling Context-Dependent Latent Heterogeneity, Political Analysis <DOI:10.1017/pan.2019.13> and <doi:10.18637/jss.v107.i10>.
Tracks elapsed clock time using a `hms::hms()` scalar. It was was originally developed to time Bayesian model runs. It should not be used to estimate how long extremely fast code takes to execute as the package code adds a small time cost.
Holistic Multimodel Domain Analysis (HMDA) is a robust and transparent framework designed for exploratory machine learning research, aiming to enhance the process of feature assessment and selection. HMDA addresses key limitations of traditional machine learning methods by evaluating the consistency across multiple high-performing models within a fine-tuned modeling grid, thereby improving the interpretability and reliability of feature importance assessments. Specifically, it computes Weighted Mean SHapley Additive exPlanations (WMSHAP), which aggregate feature contributions from multiple models based on weighted performance metrics. HMDA also provides confidence intervals to demonstrate the stability of these feature importance estimates. This framework is particularly beneficial for analyzing complex, multidimensional datasets common in health research, supporting reliable exploration of mental health outcomes such as suicidal ideation, suicide attempts, and other psychological conditions. Additionally, HMDA includes automated procedures for feature selection based on WMSHAP ratios and performs dimension reduction analyses to identify underlying structures among features. For more details see Haghish (2025) <doi:10.13140/RG.2.2.32473.63846>.
Efficient implementations of the following multiple changepoint detection algorithms: Efficient Sparsity Adaptive Change-point estimator by Moen, Glad and Tveten (2023) <doi:10.48550/arXiv.2306.04702> , Informative Sparse Projection for Estimating Changepoints by Wang and Samworth (2017) <doi:10.1111/rssb.12243>, and the method of Pilliat et al (2023) <doi:10.1214/23-EJS2126>.
Simulate haplotypes through meioses. Allows specification of population parameters.
Fits regression models on high dimensional data to estimate coefficients and use bootstrap method to obtain confidence intervals. Choices for regression models are Lasso, Lasso+OLS, Lasso partial ridge, Lasso+OLS partial ridge.
Human names are complicated and nonstandard things. Humaniformat, which is based on Anthony Ettinger's humanparser project (https://github.com/ chovy/humanparser) provides functions for parsing human names, making a best- guess attempt to distinguish sub-components such as prefixes, suffixes, middle names and salutations.
Generates high-entropy integer synthetic populations from marginal and (optionally) seed data using quasirandom sampling, in arbitrary dimensionality (Smith, Lovelace and Birkin (2017) <doi:10.18564/jasss.3550>). The package also provides an implementation of the Iterative Proportional Fitting (IPF) algorithm (Zaloznik (2011) <doi:10.13140/2.1.2480.9923>).
The presence of outliers in a dataset can substantially bias the results of statistical analyses. To correct for outliers, micro edits are manually performed on all records. A set of constraints and decision rules is typically used to aid the editing process. However, straightforward decision rules might overlook anomalies arising from disruption of linear relationships. Computationally efficient methods are provided to identify historical, tail, and relational anomalies at the data-entry level (Sartore et al., 2024; <doi:10.6339/24-JDS1136>). A score statistic is developed for each anomaly type, using a distribution-free approach motivated by the Bienaymé-Chebyshev's inequality, and fuzzy logic is used to detect cellwise outliers resulting from different types of anomalies. Each data entry is individually scored and individual scores are combined into a final score to determine anomalous entries. In contrast to fuzzy logic, Bayesian bootstrap and a Bayesian test based on empirical likelihoods are also provided as studied by Sartore et al. (2024; <doi:10.3390/stats7040073>). These algorithms allow for a more nuanced approach to outlier detection, as it can identify outliers at data-entry level which are not obviously distinct from the rest of the data. --- This research was supported in part by the U.S. Department of Agriculture, National Agriculture Statistics Service. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA, or US Government determination or policy.
This package provides an interface to HDFql <https://www.hdfql.com/> and helper functions for reading data from and writing data to HDF5 files. HDFql provides a high-level language for managing HDF5 data that is platform independent. For more information, see the reference manual <https://www.hdfql.com/resources/HDFqlReferenceManual.pdf>.
Function to identify haplotypes within QTL (Quantitative Trait Loci). One haplotype is a combination of SNP (Single Nucleotide Polymorphisms) within the QTL. This function groups together all individuals of a population with the same haplotype. Each group contains individual with the same allele in each SNP, whether or not missing data. Thus, haplotyper groups individuals, that to be imputed, have a non-zero probability of having the same alleles in the entire sequence of SNP's. Moreover, haplotyper calculates such probability from relative frequencies.
This package performs a homogeneity analysis (multiple correspondence analysis) and various extensions. Rank restrictions on the category quantifications can be imposed (nonlinear PCA). The categories are transformed by means of optimal scaling with options for nominal, ordinal, and numerical scale levels (for rank-1 restrictions). Variables can be grouped into sets, in order to emulate regression analysis and canonical correlation analysis.
This package provides tools for the estimation of Heckman selection models with robust variance-covariance matrices. It includes functions for computing the bread and meat matrices, as well as clustered standard errors for generalized Heckman models, see Fernando de Souza Bastos and Wagner Barreto-Souza and Marc G. Genton (2022, ISSN: <https://www.jstor.org/stable/27164235>). The package also offers cluster-robust inference with sandwich estimators, and tools for handling issues related to eigenvalues in covariance matrices.
Calculate expected relative risk and proportion protected assuming normally distributed log10 transformed antibody dose for a several component vaccine. Uses Hill models for each component which are combined under Bliss independence. See Saul and Fay, 2007 <DOI:10.1371/journal.pone.0000850>.
This package provides functions to conduct robust inference in difference-in-differences and event study designs by implementing the methods developed in Rambachan & Roth (2023) <doi:10.1093/restud/rdad018>, "A More Credible Approach to Parallel Trends" [Previously titled "An Honest Approach..."]. Inference is conducted under a weaker version of the parallel trends assumption. Uniformly valid confidence sets are constructed based upon conditional confidence sets, fixed-length confidence sets and hybridized confidence sets.
We provide extensions to the classical dataset "Example 4: Death by the kick of a horse in the Prussian Army" first used by Ladislaus von Bortkeiwicz in his treatise on the Poisson distribution "Das Gesetz der kleinen Zahlen", <DOI:10.1017/S0370164600019453>. As well as an extended time series for the horse-kick death data, we also provide, in parallel, deaths by falling from a horse and by drowning.