Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multivariate conditional and marginal densities, moments, cumulative distribution functions as well as binary choice and sample selection models based on Hermite polynomial approximation which was proposed and described by A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>.
Analysing time-series accelerometer data to quantify length and intensity of physical activity using hidden Markov models. It also contains the traditional cut-off point method. Witowski V, Foraita R, Pitsiladis Y, Pigeot I, Wirsik N (2014). <doi:10.1371/journal.pone.0114089>.
Inference concerning equilibrium and random mating in autopolyploids. Methods are available to test for equilibrium and random mating at any even ploidy level (>2) in the presence of double reduction at biallelic loci. For autopolyploid populations in equilibrium, methods are available to estimate the degree of double reduction. We also provide functions to calculate genotype frequencies at equilibrium, or after one or several rounds of random mating, given rates of double reduction. The main function is hwefit(). This material is based upon work supported by the National Science Foundation under Grant No. 2132247. The opinions, findings, and conclusions or recommendations expressed are those of the author and do not necessarily reflect the views of the National Science Foundation. For details of these methods, see Gerard (2023a) <doi:10.1111/biom.13722> and Gerard (2023b) <doi:10.1111/1755-0998.13856>.
This package provides a way to display word clouds in R. The word cloud is a html widget, so you can use it in interactive documents and shiny applications.
This package contains various functions for data analysis, notably helpers and diagnostics for Bayesian modelling using Stan.
Cross-species identification of novel gene candidates using the NCBI web service is provided. Further, sets of miRNA target genes can be identified by using the targetscan.org API.
Texts for H.C. Andersens fairy tales, ready for text analysis. Fairy tales in German, Danish, English, Spanish and French.
Estimation of high-dimensional multi-response regression with heterogeneous noises under Heterogeneous group square-root Lasso penalty. For details see: Ren, Z., Kang, Y., Fan, Y. and Lv, J. (2018)<arXiv:1606.03803>.
Paternal recombination rate and maternal linkage disequilibrium (LD) are estimated for pairs of biallelic markers such as single nucleotide polymorphisms (SNPs) from progeny genotypes and sire haplotypes. The implementation relies on paternal half-sib families. If maternal half-sib families are used, the roles of sire/dam are swapped. Multiple families can be considered. For parameter estimation, at least one sire has to be double heterozygous at the investigated pairs of SNPs. Based on recombination rates, genetic distances between markers can be estimated. Markers with unusually large recombination rate to markers in close proximity (i.e. putatively misplaced markers) shall be discarded in this derivation. A workflow description is attached as vignette. *A pipeline is available at GitHub* <https://github.com/wittenburg/hsrecombi> Hampel, Teuscher, Gomez-Raya, Doschoris, Wittenburg (2018) "Estimation of recombination rate and maternal linkage disequilibrium in half-sibs" <doi:10.3389/fgene.2018.00186>. Gomez-Raya (2012) "Maximum likelihood estimation of linkage disequilibrium in half-sib families" <doi:10.1534/genetics.111.137521>.
High level functions for hyperplane fitting (hyper.fit()) and visualising (hyper.plot2d() / hyper.plot3d()). In simple terms this allows the user to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimension dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane.
This package performs Gaussian process regression with heteroskedastic noise following the model by Binois, M., Gramacy, R., Ludkovski, M. (2016) <doi:10.48550/arXiv.1611.05902>, with implementation details in Binois, M. & Gramacy, R. B. (2021) <doi:10.18637/jss.v098.i13>. The input dependent noise is modeled as another Gaussian process. Replicated observations are encouraged as they yield computational savings. Sequential design procedures based on the integrated mean square prediction error and lookahead heuristics are provided, and notably fast update functions when adding new observations.
It is used to construct run sequences with minimum changes for half replicate of two level factorial run order. Experimenter can save time and resources by minimizing the number of changes in levels of individual factor and therefore the total number of changes. It consists of the function minimal_hrtlf(). This technique can be employed to any half replicate of two level factorial run order where the number of factors are greater than two. In Design of Experiments (DOE) theory, two level of a factor can be represented as integers e.g. - 1 for low and 1 for high. User is expected to enter total number of factors to be considered in the experiment. minimal_hrtlf() provides the required run sequences for the input number of factors. The output also gives the number of changes of each factor along with total number of changes in the run sequence. Due to restricted randomization the minimally changed run sequences of half replicate of two level factorial run order will be affected by trend effect. The output also provides the Trend Factor value of the run order. Trend factor value will lies between 0 to 1. Higher the values, lesser the influence of trend effects on the run order.
In some cases you will have data in a histogram format, where you have a vector of all possible observations, and a vector of how many times each observation appeared. You could expand this into a single 1D vector, but this may not be advisable if the counts are extremely large. HistDat allows for the calculation of summary statistics without the need for expanding your data.
This package provides a shiny interface for a free, open-source managerial accounting-like system for health care practices. This package allows health care administrators to project revenue with monthly adjustments and procedure-specific boosts up to a 3-year period. Granular data (patient-level) to aggregated data (department- or hospital-level) can all be used as valid inputs provided historical volume and revenue data is available. For more details on managerial accounting techniques, see Brewer et al. (2015, ISBN:9780078025792).
Generates high-entropy integer synthetic populations from marginal and (optionally) seed data using quasirandom sampling, in arbitrary dimensionality (Smith, Lovelace and Birkin (2017) <doi:10.18564/jasss.3550>). The package also provides an implementation of the Iterative Proportional Fitting (IPF) algorithm (Zaloznik (2011) <doi:10.13140/2.1.2480.9923>).
Develops algorithms for fitting, prediction, simulation and initialization of the following models (1)- hidden hybrid Markov/semi-Markov model, introduced by Guedon (2005) <doi:10.1016/j.csda.2004.05.033>, (2)- nonparametric mixture of B-splines emissions (Langrock et al., 2015 <doi:10.1111/biom.12282>), (3)- regime switching regression model (Kim et al., 2008 <doi:10.1016/j.jeconom.2007.10.002>) and auto-regressive hidden hybrid Markov/semi-Markov model, (4)- spline-based nonparametric estimation of additive state-switching models (Langrock et al., 2018 <doi:10.1111/stan.12133>) (5)- robust emission model proposed by Qin et al, 2024 <doi:10.1007/s10479-024-05989-4> (6)- several emission distributions, including mixture of multivariate normal (which can also handle missing data using EM algorithm) and multi-nomial emission (for modeling polymer or DNA sequences) (7)- tools for prediction of future state sequence, computing the score of a new sequence, splitting the samples and sequences to train and test sets, computing the information measures of the models, computing the residual useful lifetime (reliability) and many other useful tools ... (read for more description: Amini et al., 2022 <doi:10.1007/s00180-022-01248-x> and its arxiv version: <doi:10.48550/arXiv.2109.12489>).
This package provides tools for emitting the Problem Details structure defined in RFC 7807 <https://tools.ietf.org/html/rfc7807> for reporting errors from HTTP servers in a standard way.
Objective: Implement new methods for detecting change points in high-dimensional time series data. These new methods can be applied to non-Gaussian data, account for spatial and temporal dependence, and detect a wide variety of change-point configurations, including changes near the boundary and changes in close proximity. Additionally, this package helps address the â small n, large pâ problem, which occurs in many research contexts. This problem arises when a dataset contains changes that are visually evident but do not rise to the level of statistical significance due to the small number of observations and large number of parameters. The problem is overcome by treating the dimensions as a whole and scaling the test statistics only by its standard deviation, rather than scaling each dimension individually. Due to the computational complexity of the functions, the package runs best on datasets with a relatively large number of attributes but no more than a few hundred observations.
Build better balance in causal inference models. halfmoon helps you assess propensity score models for balance between groups using metrics like standardized mean differences and visualization techniques like mirrored histograms. halfmoon supports both weighting and matching techniques.
Homomorphic encryption (Brakerski and Vaikuntanathan (2014) <doi:10.1137/120868669>) using Ring Learning with Errors (Lyubashevsky et al. (2012) <https://eprint.iacr.org/2012/230>) is a form of Learning with Errors (Regev (2005) <doi:10.1145/1060590.1060603>) using polynomial rings over finite fields. Functions to generate the required polynomials (using polynom'), with various distributions of coefficients are provided. Additionally, functions to generate and take coefficient modulo are provided.
Automatic construction of regular and irregular histograms as described in Rozenholc/Mildenberger/Gather (2010).
Identification of recombination events, haplotype reconstruction, sire imputation and pedigree reconstruction using half-sib family SNP data.
The theoretical covariance between pairs of markers is calculated from either paternal haplotypes and maternal linkage disequilibrium (LD) or vise versa. A genetic map is required. Grouping of markers is based on the correlation matrix and a representative marker is suggested for each group. Employing the correlation matrix, optimal sample size can be derived for association studies based on a SNP-BLUP approach. The implementation relies on paternal half-sib families and biallelic markers. If maternal half-sib families are used, the roles of sire/dam are swapped. Multiple families can be considered. Wittenburg, Bonk, Doschoris, Reyer (2020) "Design of Experiments for Fine-Mapping Quantitative Trait Loci in Livestock Populations" <doi:10.1186/s12863-020-00871-1>. Carlson, Eberle, Rieder, Yi, Kruglyak, Nickerson (2004) "Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium" <doi:10.1086/381000>.
Estimate parameters of the hysteretic threshold autoregressive (HysTAR) model, using conditional least squares. In addition, you can generate time series data from the HysTAR model. For details, see Li, Guan, Li and Yu (2015) <doi:10.1093/biomet/asv017>.