Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Audio interactivity within shiny applications using howler.js'. Enables the status of the audio player to be sent from the UI to the server, and events such as playing and pausing the audio can be triggered from the server.
We provide functions for identifying the core community phylogeny in any microbiome, drawing phylogenetic Venn diagrams, calculating the core Faithâ s PD for a set of communities, and calculating the core UniFrac distance between two sets of communities. All functions rely on construction of a core community phylogeny, which is a phylogeny where branches are defined based on their presence in multiple samples from a single type of habitat. Our package provides two options for constructing the core community phylogeny, a tip-based approach, where the core community phylogeny is identified based on incidence of leaf nodes and a branch-based approach, where the core community phylogeny is identified based on incidence of individual branches. We suggest use of the microViz package.
Mediation analysis is used to identify and quantify intermediate effects from factors that intervene the observed relationship between an exposure/predicting variable and an outcome. We use a Bayesian adaptive lasso method to take care of the hierarchical structures and high dimensional exposures or mediators.
In high-dimensional settings: Estimate the number of distant spikes based on the Generalized Spiked Population (GSP) model. Estimate the population eigenvalues, angles between the sample and population eigenvectors, correlations between the sample and population PC scores, and the asymptotic shrinkage factors. Adjust the shrinkage bias in the predicted PC scores. Dey, R. and Lee, S. (2019) <doi:10.1016/j.jmva.2019.02.007>.
This package provides functions to perform dimensionality reduction for classification if the covariance matrices of the classes are unequal.
This package provides a program that conducts group variable selection for quantile and robust mean regression (Sherwood and Li, 2022). The group lasso penalty (Yuan and Lin, 2006) is used for group-wise variable selection. Both of the quantile and mean regression models are based on the Huber loss. Specifically, with the tuning parameter in the Huber loss approaching to 0, the quantile check function can be approximated by the Huber loss for the median and the tilted version of Huber loss at other quantiles. Such approximation provides computational efficiency and stability, and has also been shown to be statistical consistent.
Identifies regime changes in streamflow runoff not explained by variations in precipitation. The package builds a flexible set of Hidden Markov Models of annual, seasonal or monthly streamflow runoff with precipitation as a predictor. Suites of models can be built for a single site, ranging from one to three states and each with differing combinations of error models and auto-correlation terms. The most parsimonious model is easily identified by AIC, and useful for understanding catchment drought non-recovery: Peterson TJ, Saft M, Peel MC & John A (2021) <doi:10.1126/science.abd5085>.
Create compressed, interactive HTML (Hypertext Markup Language) reports with embedded Python code, custom JS ('JavaScript') and CSS (Cascading Style Sheets), and wrappers for CanvasXpress plots, networks and more. Based on <https://pypi.org/project/py-report-html/>, its sister project.
Computes the ACMIF test and Bonferroni-adjusted p-value of interaction in two-factor studies. Produces corresponding interaction plot and analysis of variance tables and p-values from several other tests of non-additivity.
This package contains miscellaneous functions useful for managing NetCDF files (see <https://en.wikipedia.org/wiki/NetCDF>), get moon phase and time for sun rise and fall, tide level, analyse and reconstruct periodic time series of temperature with irregular sinusoidal pattern, show scales and wind rose in plot with change of color of text, Metropolis-Hastings algorithm for Bayesian MCMC analysis, plot graphs or boxplot with error bars, search files in disk by there names or their content, read the contents of all files from a folder at one time.
Haplotype and covariate relative risks in case-control data are estimated by weighted logistic regression. Diplotype probabilities, which are estimated by EM computation with progressive insertion of loci, are utilized as weights. French et al. (2006) <doi:10.1002/gepi.20161>.
This package provides uniform testing procedures for existence and heterogeneity of threshold effects in high-dimensional nonparametric panel regression models. The package accompanies the paper Chen, Keilbar, Su and Wang (2023) "Inference on many jumps in nonparametric panel regression models". arXiv preprint <doi:10.48550/arXiv.2312.01162>.
This package provides a histogram slider input binding for use in Shiny'. Currently supports creating histograms from numeric, date, and date-time vectors.
We provide a collection of various classical tests and latest normal-reference tests for comparing high-dimensional mean vectors including two-sample and general linear hypothesis testing (GLHT) problem. Some existing tests for two-sample problem [see Bai, Zhidong, and Hewa Saranadasa.(1996) <https://www.jstor.org/stable/24306018>; Chen, Song Xi, and Ying-Li Qin.(2010) <doi:10.1214/09-aos716>; Srivastava, Muni S., and Meng Du.(2008) <doi:10.1016/j.jmva.2006.11.002>; Srivastava, Muni S., Shota Katayama, and Yutaka Kano.(2013)<doi:10.1016/j.jmva.2012.08.014>]. Normal-reference tests for two-sample problem [see Zhang, Jin-Ting, Jia Guo, Bu Zhou, and Ming-Yen Cheng.(2020) <doi:10.1080/01621459.2019.1604366>; Zhang, Jin-Ting, Bu Zhou, Jia Guo, and Tianming Zhu.(2021) <doi:10.1016/j.jspi.2020.11.008>; Zhang, Liang, Tianming Zhu, and Jin-Ting Zhang.(2020) <doi:10.1016/j.ecosta.2019.12.002>; Zhang, Liang, Tianming Zhu, and Jin-Ting Zhang.(2023) <doi:10.1080/02664763.2020.1834516>; Zhang, Jin-Ting, and Tianming Zhu.(2022) <doi:10.1080/10485252.2021.2015768>; Zhang, Jin-Ting, and Tianming Zhu.(2022) <doi:10.1007/s42519-021-00232-w>; Zhu, Tianming, Pengfei Wang, and Jin-Ting Zhang.(2023) <doi:10.1007/s00180-023-01433-6>]. Some existing tests for GLHT problem [see Fujikoshi, Yasunori, Tetsuto Himeno, and Hirofumi Wakaki.(2004) <doi:10.14490/jjss.34.19>; Srivastava, Muni S., and Yasunori Fujikoshi.(2006) <doi:10.1016/j.jmva.2005.08.010>; Yamada, Takayuki, and Muni S. Srivastava.(2012) <doi:10.1080/03610926.2011.581786>; Schott, James R.(2007) <doi:10.1016/j.jmva.2006.11.007>; Zhou, Bu, Jia Guo, and Jin-Ting Zhang.(2017) <doi:10.1016/j.jspi.2017.03.005>]. Normal-reference tests for GLHT problem [see Zhang, Jin-Ting, Jia Guo, and Bu Zhou.(2017) <doi:10.1016/j.jmva.2017.01.002>; Zhang, Jin-Ting, Bu Zhou, and Jia Guo.(2022) <doi:10.1016/j.jmva.2021.104816>; Zhu, Tianming, Liang Zhang, and Jin-Ting Zhang.(2022) <doi:10.5705/ss.202020.0362>; Zhu, Tianming, and Jin-Ting Zhang.(2022) <doi:10.1007/s00180-021-01110-6>; Zhang, Jin-Ting, and Tianming Zhu.(2022) <doi:10.1016/j.csda.2021.107385>].
This package provides data for functions typically used in the healthyR package.
This package provides various tests for comparing high-dimensional mean vectors in two sample populations.
Identification of recombination events, haplotype reconstruction, sire imputation and pedigree reconstruction using half-sib family SNP data.
The hotspots package is designed to look within a set of measured values of a variable and identify values that are disproportionately high based on both the deviance of any given value from a statistical distribution and its similarity to other values. Because this relative magnitude of each value is taken into account, a value that is a statistical outlier may not always be a hot spot if other values are similarly large.
This package provides a novel decision tree algorithm in the hypothesis testing framework. The algorithm examines the distribution difference between two child nodes over all possible binary partitions. The test statistic of the hypothesis testing is equivalent to the generalized energy distance, which enables the algorithm to be more powerful in detecting the complex structure, not only the mean difference. It is applicable for numeric, nominal, ordinal explanatory variables and the response in general metric space of strong negative type. The algorithm has superior performance compared to other tree models in type I error, power, prediction accuracy, and complexity.
This package provides methods to test whether time series is consistent with white noise. Two new tests based on Haar wavelets and general wavelets described by Nason and Savchev (2014) <doi:10.1002/sta4.69> are provided and, for comparison purposes this package also implements the B test of Bartlett (1967) <doi:10.2307/2333850>. Functionality is provided to compute an approximation to the theoretical power of the general wavelet test in the case of general ARMA alternatives.
This package provides a scalable implementation of the highly adaptive lasso algorithm, including routines for constructing sparse matrices of basis functions of the observed data, as well as a custom implementation of Lasso regression tailored to enhance efficiency when the matrix of predictors is composed exclusively of indicator functions. For ease of use and increased flexibility, the Lasso fitting routines invoke code from the glmnet package by default. The highly adaptive lasso was first formulated and described by MJ van der Laan (2017) <doi:10.1515/ijb-2015-0097>, with practical demonstrations of its performance given by Benkeser and van der Laan (2016) <doi:10.1109/DSAA.2016.93>. This implementation of the highly adaptive lasso algorithm was described by Hejazi, Coyle, and van der Laan (2020) <doi:10.21105/joss.02526>.
Statistical functions used in the French HydroPortail <https://hydro.eaufrance.fr/>. This includes functions to estimate distributions, quantile curves and uncertainties, along with various other utilities. Technical details are available (in French) in Renard (2016) <https://hal.inrae.fr/hal-02605318>.
For supersonic aircraft, flying subsonic over land, find the best route between airports. Allow for coastal buffer and potentially closed regions. Use a minimal model of aircraft performance: the focus is on time saved versus subsonic flight, rather than on vertical flight profile. For modelling and forecasting, not for planning your flight!
Bipartite graph-based hierarchical clustering, developed for pharmacogenomic datasets and datasets sharing the same data structure. The goal is to construct a hierarchical clustering of groups of samples based on association patterns between two sets of variables. In the context of pharmacogenomic datasets, the samples are cell lines, and the two sets of variables are typically expression levels and drug sensitivity values. For this method, sparse canonical correlation analysis from Lee, W., Lee, D., Lee, Y. and Pawitan, Y. (2011) <doi:10.2202/1544-6115.1638> is first applied to extract association patterns for each group of samples. Then, a nuclear norm-based dissimilarity measure is used to construct a dissimilarity matrix between groups based on the extracted associations. Finally, hierarchical clustering is applied.