Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We provide an R tool for computation and nonparametric plug-in estimation of Highest Density Regions (HDRs) and general level sets in the directional setting. Concretely, circular and spherical HDRs can be reconstructed from a data sample following Saavedra-Nieves and Crujeiras (2021) <doi:10.1007/s11634-021-00457-4>. This library also contains two real datasets in the circular and spherical settings. The first one concerns a problem from animal orientation studies and the second one is related to earthquakes occurrences.
Generates high-entropy integer synthetic populations from marginal and (optionally) seed data using quasirandom sampling, in arbitrary dimensionality (Smith, Lovelace and Birkin (2017) <doi:10.18564/jasss.3550>). The package also provides an implementation of the Iterative Proportional Fitting (IPF) algorithm (Zaloznik (2011) <doi:10.13140/2.1.2480.9923>).
User-friendly and fast set of functions for estimating parameters of hierarchical Bayesian species distribution models (Latimer and others 2006 <doi:10.1890/04-0609>). Such models allow interpreting the observations (occurrence and abundance of a species) as a result of several hierarchical processes including ecological processes (habitat suitability, spatial dependence and anthropogenic disturbance) and observation processes (species detectability). Hierarchical species distribution models are essential for accurately characterizing the environmental response of species, predicting their probability of occurrence, and assessing uncertainty in the model results.
This package provides a suite of functions to ping URLs and to time HTTP requests'. Designed to work with httr'.
Generates valid HTML tag strings for HTML5 elements documented by Mozilla. Attributes are passed as named lists, with names being the attribute name and values being the attribute value. Attribute values are automatically double-quoted. To declare a DOCTYPE, wrap html() with function doctype(). Mozilla's documentation for HTML5 is available here: <https://developer.mozilla.org/en-US/docs/Web/HTML/Element>. Elements marked as obsolete are not included.
Read, plot, manipulate and process hydro-meteorological data from Argentina and Chile.
An S4 class and several functions which utilize internally stored datasets and gauging data enable 1d water level interpolation. The S4 class (WaterLevelDataFrame) structures the computation and visualisation of 1d water level information along the German federal waterways Elbe and Rhine. hyd1d delivers 1d water level data - extracted from the FLYS database - and validated gauging data - extracted from the hydrological database WISKI7 - package-internally. For computations near real time gauging data are queried externally from the PEGELONLINE REST API <https://pegelonline.wsv.de/webservice/dokuRestapi>.
Several handy plots for quickly looking at the relationship between two numeric vectors of equal length. Quickly visualize scatter plots, residual plots, qq-plots, box plots, confidence intervals, and prediction intervals.
This package implements the Brakerski-Fan-Vercauteren (BFV, 2012) <https://eprint.iacr.org/2012/144>, Brakerski-Gentry-Vaikuntanathan (BGV, 2014) <doi:10.1145/2633600>, and Cheon-Kim-Kim-Song (CKKS, 2016) <https://eprint.iacr.org/2016/421.pdf> schema for Fully Homomorphic Encryption. The included vignettes demonstrate the encryption procedures.
This package implements hierarchically regularized entropy balancing proposed by Xu and Yang (2022) <doi:10.1017/pan.2022.12>. The method adjusts the covariate distributions of the control group to match those of the treatment group. hbal automatically expands the covariate space to include higher order terms and uses cross-validation to select variable penalties for the balancing conditions.
This package provides a tool for Hierarchical Climate Regionalization applicable to any correlation-based clustering. It adds several features and a new clustering method (called, regional linkage) to hierarchical clustering in R ('hclust function in stats library): data regridding, coarsening spatial resolution, geographic masking, contiguity-constrained clustering, data filtering by mean and/or variance thresholds, data preprocessing (detrending, standardization, and PCA), faster correlation function with preliminary big data support, different clustering methods, hybrid hierarchical clustering, multivariate clustering (MVC), cluster validation, visualization of regionalization results, and exporting region map and mean timeseries into NetCDF-4 file. The technical details are described in Badr et al. (2015) <doi:10.1007/s12145-015-0221-7>.
This package implements the estimators and algorithms described in Chapters 8 and 9 of the book "The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation" by Nair et al. (2022, ISBN:9781009053730). These include the Hill estimator, Moments estimator, Pickands estimator, Peaks-over-Threshold (POT) method, Power-law fit, and the Double Bootstrap algorithm.
This package implements the Hierarchical Incremental GRAdient Descent (HiGrad) algorithm, a first-order algorithm for finding the minimizer of a function in online learning just like stochastic gradient descent (SGD). In addition, this method attaches a confidence interval to assess the uncertainty of its predictions. See Su and Zhu (2018) <arXiv:1802.04876> for details.
By binding R functions and the Highcharts <http://www.highcharts.com/> charting library, hpackedbubble package provides a simple way to draw split packed bubble charts.
HTTP Request protocols. Implements the GET, POST and multipart POST request.
This package provides a modular and computationally efficient R package for parameterizing, simulating, and analyzing health economic simulation models. The package supports cohort discrete time state transition models (Briggs et al. 1998) <doi:10.2165/00019053-199813040-00003>, N-state partitioned survival models (Glasziou et al. 1990) <doi:10.1002/sim.4780091106>, and individual-level continuous time state transition models (Siebert et al. 2012) <doi:10.1016/j.jval.2012.06.014>, encompassing both Markov (time-homogeneous and time-inhomogeneous) and semi-Markov processes. Decision uncertainty from a cost-effectiveness analysis is quantified with standard graphical and tabular summaries of a probabilistic sensitivity analysis (Claxton et al. 2005, Barton et al. 2008) <doi:10.1002/hec.985>, <doi:10.1111/j.1524-4733.2008.00358.x>. Use of C++ and data.table make individual-patient simulation, probabilistic sensitivity analysis, and incorporation of patient heterogeneity fast.
This package provides a novel decision tree algorithm in the hypothesis testing framework. The algorithm examines the distribution difference between two child nodes over all possible binary partitions. The test statistic of the hypothesis testing is equivalent to the generalized energy distance, which enables the algorithm to be more powerful in detecting the complex structure, not only the mean difference. It is applicable for numeric, nominal, ordinal explanatory variables and the response in general metric space of strong negative type. The algorithm has superior performance compared to other tree models in type I error, power, prediction accuracy, and complexity.
We use the Alternating Direction Method of Multipliers (ADMM) for parameter estimation in high-dimensional, single-modality mediation models. To improve the sensitivity and specificity of estimated mediation effects, we offer the sure independence screening (SIS) function for dimension reduction. The available penalty options include Lasso, Elastic Net, Pathway Lasso, and Network-constrained Penalty. The methods employed in the package are based on Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). <doi:10.1561/2200000016>, Fan, J., & Lv, J. (2008) <doi:10.1111/j.1467-9868.2008.00674.x>, Li, C., & Li, H. (2008) <doi:10.1093/bioinformatics/btn081>, Tibshirani, R. (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, Zhao, Y., & Luo, X. (2022) <doi:10.4310/21-sii673>, and Zou, H., & Hastie, T. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>.
Hospital time series data analysis workflow tools, modeling, and automations. This library provides many useful tools to review common administrative time series hospital data. Some of these include average length of stay, and readmission rates. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.
H3 is a hexagonal hierarchical spatial index developed by Uber <https://h3geo.org/>. This package exposes the source code of H3 (written in C') to routines that are callable through R'.
Cellular responses to perturbations are highly heterogeneous and depend largely on the initial state of cells. Connecting post-perturbation cells via cellular trajectories to untreated cells (e.g. by leveraging metabolic labeling information) enables exploitation of intercellular heterogeneity as a combined knock-down and overexpression screen to identify pathway modulators, termed Heterogeneity-seq (see Berg et al <doi:10.1101/2024.10.28.620481>). This package contains functions to generate cellular trajectories based on scSLAM-seq (single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing) time courses, functions to identify pathway modulators and to visualize the results.
When performing multiple imputations, while 5-10 imputations are sufficient for obtaining point estimates, a larger number of imputations are needed for proper standard error estimates. This package allows you to calculate how many imputations are needed, following the work of von Hippel (2020) <doi:10.1177/0049124117747303>.
Input multiple versions of a source document, and receive HTML code for a highlighted version of the source document indicating the frequency of occurrence of phrases in the different versions. This method is described in Chapter 3 of Rogers (2024) <https://digitalcommons.unl.edu/dissertations/AAI31240449/>.
This package provides tools to model, compare, and visualize populations of taxonomic tree objects.