Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a modification to the Random Survival Forests algorithm for obtaining variable importance in high dimensional datasets. The proposed algorithm is appropriate for settings in which a silent event is observed through sequentially administered, error-prone self-reports or laboratory based diagnostic tests. The modified algorithm incorporates a formal likelihood framework that accommodates sequentially administered, error-prone self-reports or laboratory based diagnostic tests. The original Random Survival Forests algorithm is modified by the introduction of a new splitting criterion based on a likelihood ratio test statistic.
This package provides a toolbox for constructing potential landscapes for Ising networks. The parameters of the networks can be directly supplied by users or estimated by the IsingFit package by van Borkulo and Epskamp (2016) <https://CRAN.R-project.org/package=IsingFit> from empirical data. The Ising model's Boltzmann distribution is preserved for the potential landscape function. The landscape functions can be used for quantifying and visualizing the stability of network states, as well as visualizing the simulation process.
Calculation of key bacterial growth curve parameters using fourth degree polynomial functions. Six growth curve parameters are provided including peak growth rate, doubling time, lag time, maximum growth, and etc. ipolygrowth takes time series data from individual biological samples (with technical replicates) or multiple samples.
This package provides a bunch of functions to deal with circular data under order restrictions.
This package provides a suite of functions for conducting and interpreting analysis of statistical interaction in regression models that was formerly part of the jtools package. Functionality includes visualization of two- and three-way interactions among continuous and/or categorical variables as well as calculation of "simple slopes" and Johnson-Neyman intervals (see e.g., Bauer & Curran, 2005 <doi:10.1207/s15327906mbr4003_5>). These capabilities are implemented for generalized linear models in addition to the standard linear regression context.
Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.
Generates a Graphviz graph of the most significant 3-way interaction gains (i.e. conditional information gains) based on a provided discrete data frame. Various output formats are supported ('Graphviz', SVG, PNG, PDF, PS). For references, see the webpage of Aleks Jakulin <http://stat.columbia.edu/~jakulin/Int/>.
Multiple Imputation for Informative Censoring. This package implements two methods. Gamma Imputation described in <DOI:10.1002/sim.6274> and Risk Score Imputation described in <DOI:10.1002/sim.3480>.
Classical Ising Model is a land mark system in statistical physics.The model explains the physics of spin glasses and magnetic materials, and cooperative phenomenon in general, for example phase transitions and neural networks.This package provides utilities to simulate one dimensional Ising Model with Metropolis and Glauber Monte Carlo with single flip dynamics in periodic boundary conditions. Utility functions for exact solutions are provided. Such as transfer matrix for 1D. Utility functions for exact solutions are provided. Example use cases are as follows: Measuring effective ergodicity and power-laws in so called functional-diffusion.
This package provides functions to build, evaluate, and visualize insurance rating models. It simplifies the process of modeling premiums, and allows to analyze insurance risk factors effectively. The package employs a data-driven strategy for constructing insurance tariff classes, drawing on the work of Antonio and Valdez (2012) <doi:10.1007/s10182-011-0152-7>.
Generates Rd files from R source code with comments. The main features of the default syntax are that (1) docs are defined in comments near the relevant code, (2) function argument names are not repeated in comments, and (3) examples are defined in R code, not comments. It is also easy to define a new syntax.
This package provides functions to analyse missing value mechanisms and to impute data sets in the context of bottom-up MS-based proteomics.
We consider studies in which information from error-prone diagnostic tests or self-reports are gathered sequentially to determine the occurrence of a silent event. Using a likelihood-based approach incorporating the proportional hazards assumption, we provide functions to estimate the survival distribution and covariate effects. We also provide functions for power and sample size calculations for this setting. Please refer to Xiangdong Gu, Yunsheng Ma, and Raji Balasubramanian (2015) <doi: 10.1214/15-AOAS810>, Xiangdong Gu and Raji Balasubramanian (2016) <doi: 10.1002/sim.6962>, Xiangdong Gu, Mahlet G Tadesse, Andrea S Foulkes, Yunsheng Ma, and Raji Balasubramanian (2020) <doi: 10.1186/s12911-020-01223-w>.
It constructs a Consensus Network which identifies the general information of all the layers and Specific Networks for each layer with the information present only in that layer and not in all the others.The method is described in Policastro et al. (2024) "INet for network integration" <doi:10.1007/s00180-024-01536-8>.
An implementation of the "FAST-9" corner detection algorithm explained in the paper FASTER and better: A machine learning approach to corner detection by Rosten E., Porter R. and Drummond T. (2008), available at <doi:10.48550/arXiv.0810.2434>. The package allows to detect corners in digital images.
This package provides a set of tools for writing documents according to Geneva Graduate Institute conventions and regulations. The most common use is for writing and compiling theses or thesis chapters, as drafts or for examination with correct preamble formatting. However, the package also offers users to create HTML presentation slides with xaringan', complete problem sets, format posters, and, for course instructors, prepare a syllabus. The package includes additional functions for institutional color palettes, an institutional ggplot theme, a function for counting manuscript words, and a bibliographical analysis toolkit.
Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (<https://www.r-inla.org>). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) <doi:10.1111/2041-210X.13168>.
This package implements a wide range of metrics for measuring glucose control and glucose variability based on continuous glucose monitoring data. The list of implemented metrics is summarized in Rodbard (2009) <doi:10.1089/dia.2009.0015>. Additional visualization tools include time-series plots, lasagna plots and ambulatory glucose profile report.
This minimalist package is designed to quickly score raw data outputted from an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) <doi:10.1037/0022-3514.74.6.1464>. IAT scores are calculated as specified by Greenwald, Nosek, and Banaji (2003) <doi:10.1037/0022-3514.85.2.197>. Outputted values can be interpreted as effect sizes. The input function consists of three arguments. First, indicate the name of the dataset to be analyzed. This is the only required input. Second, indicate the number of trials in your entire IAT (the default is set to 219, which is typical for most IATs). Last, indicate whether congruent trials (e.g., flowers and pleasant) or incongruent trials (e.g., guns and pleasant) were presented first for this participant (the default is set to congruent). The script will tell you how long it took to run the code, the effect size for the participant, and whether that participant should be excluded based on the criteria outlined by Greenwald et al. (2003). Data files should consist of six columns organized in order as follows: Block (0-6), trial (0-19 for training blocks, 0-39 for test blocks), category (dependent on your IAT), the type of item within that category (dependent on your IAT), a dummy variable indicating whether the participant was correct or incorrect on that trial (0=correct, 1=incorrect), and the participantâ s reaction time (in milliseconds). Three sample datasets are included in this package (labeled IAT', TooFastIAT', and BriefIAT') to practice with.
R interface to access the web services of the ICES Stock Database <https://sd.ices.dk>.
This package provides ability to create color palettes from image files. It offers control over the type of color palette to derive from an image (qualitative, sequential or divergent) and other palette properties. Quantiles of an image color distribution can be trimmed. Near-black or near-white colors can be trimmed in RGB color space independent of trimming brightness or saturation distributions in HSV color space. Creating sequential palettes also offers control over the order of HSV color dimensions to sort by. This package differs from other related packages like RImagePalette in approaches to quantizing and extracting colors in images to assemble color palettes and the level of user control over palettes construction.
This package provides tools for mapping International Classification of Diseases codes to comorbidity, enabling the identification and analysis of various medical conditions within healthcare data.
We provide an R tool for teaching in Social Sciences. It allows the computation of index numbers. It is a measure of the evolution of a fixed magnitude for only a product of for several products. It is very useful in Social Sciences. Among others, we obtain simple index numbers (in chain or in serie), index numbers for not only a product or weighted index numbers as the Laspeyres index (Laspeyres, 1864), the Paasche index (Paasche, 1874) or the Fisher index (Lapedes, 1978).
This package implements a Shiny Item Analysis module and functions for computing false positive rate and other binary classification metrics from inter-rater reliability based on Bartoš & Martinková (2024) <doi:10.1111/bmsp.12343>.