Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The matrix factor model has drawn growing attention for its advantage in achieving two-directional dimension reduction simultaneously for matrix-structured observations. In contrast to the Principal Component Analysis (PCA)-based methods, we propose a simple Iterative Alternating Least Squares (IALS) algorithm for matrix factor model, see the details in He et al. (2023) <arXiv:2301.00360>.
Estimation of joint models for multivariate longitudinal markers (with various distributions available) and survival outcomes (possibly accounting for competing risks) with Integrated Nested Laplace Approximations (INLA). The flexible and user friendly function joint() facilitates the use of the fast and reliable inference technique implemented in the INLA package for joint modeling. More details are given in the help page of the joint() function (accessible via ?joint in the R console) and the vignette associated to the joint() function (accessible via vignette("INLAjoint") in the R console).
Collect marketing data from Instagram Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
The Percentage of Importance Indice (Percentage_I.I.) bases in magnitudes, frequencies, and distributions of occurrence of an event (DEMOLIN-LEITE, 2021) <http://cjascience.com/index.php/CJAS/article/view/1009/1350>. This index can detect the key loss sources (L.S) and solution sources (S.S.), classifying them according to their importance in terms of loss or income gain, on the productive system. The Percentage_I.I. = [(ks1 x c1 x ds1)/SUM (ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)] x 100. key source (ks) is obtained using simple regression analysis and magnitude (abundance). Constancy (c) is SUM of occurrence of L.S. or S.S. on the samples (absence = 0 or presence = 1), and distribution source (ds) is obtained using chi-square test. This index has derivations: i.e., i) Loss estimates and solutions effectiveness and ii) Attention and non-attention levels (DEMOLIN-LEITE,2024) <DOI: 10.1590/1519-6984.253215>.
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
Instrumental variable (IV) estimators for homogeneous and heterogeneous treatment effects with efficient machine learning instruments. The estimators are based on double/debiased machine learning allowing for nonlinear and potentially high-dimensional control variables. Details can be found in Scheidegger, Guo and Bühlmann (2025) "Inference for heterogeneous treatment effects with efficient instruments and machine learning" <doi:10.48550/arXiv.2503.03530>.
This package provides functions to estimate the probability to receive the observed treatment, based on individual characteristics. The inverse of these probabilities can be used as weights when estimating causal effects from observational data via marginal structural models. Both point treatment situations and longitudinal studies can be analysed. The same functions can be used to correct for informative censoring.
Addresses the log of zero by developing a new family of estimators called iterated Ordinary Least Squares. This family nests standard approaches such as log-linear and Poisson regressions, offers several computational advantages, and corresponds to the correct way to perform the popular log(Y + 1) transformation. For more details about how to use it, see the notebook at: <https://www.davidbenatia.com/>.
This package provides a tool to calculate the performance of a time series in a specific date or period. It is more intended for data analysis in the fields of finance, banking, telecommunications or operational marketing.
This package provides functions are provided to interpolate geo-referenced point data via Inverse Path Distance Weighting. Useful for coastal marine applications where barriers in the landscape preclude interpolation with Euclidean distances.
This package provides a set of functions to estimate interactions flexibly in the face of possibly many controls. Implements the procedures described in Blackwell and Olson (2022) <doi:10.1017/pan.2021.19>.
This is an Automatic Item Generator for Psychological Assessment. Items created with the IMak package should not be used in applied settings as part of the working protocol without ensuring first that the items meet the required psychometric quality standards (see Blum & Holling, 2018) <DOI:10.3389/fpsyg.2018.01286>.
This package provides a GUI designed to support the analysis of financial-economic time series data.
Estimation and diagnostic tools for instrumental variables designs, which implements the guidelines proposed in Lal et al. (2023) <arXiv:2303.11399>, including bootstrapped confidence intervals, effective F-statistic, Anderson-Rubin test, valid-t ratio test, and local-to-zero tests.
Multi-data type subtyping, which is data type agnostic and accepts missing data. Subtyping is performed using intermediary assessments created with autoencoders and similarity calculations. See Fox et al. (2024) <doi:10.1016/j.crmeth.2024.100884> for details.
Independent vector analysis (IVA) is a blind source separation (BSS) model where several datasets are jointly unmixed. This package provides several methods for the unmixing together with some performance measures. For details, see Anderson et al. (2011) <doi:10.1109/TSP.2011.2181836> and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.
This package performs diagnostic tests of multiplicative interaction models and plots non-linear marginal effects of a treatment on an outcome across different values of a moderator.
Quick indexation of any type of vector or of any combination of those. Indexation turns a vector into an integer vector going from 1 to the number of unique elements. Indexes are important building blocks for many algorithms. The method is described at <https://github.com/lrberge/indexthis/>.
The app will calculate the ICER (incremental cost-effectiveness ratio) Rawlins (2012) <doi:10.1016/B978-0-7020-4084-9.00044-6> from the mean costs and quality-adjusted life years (QALY) Torrance and Feeny (2009) <doi:10.1017/S0266462300008461> for a set of treatment options, and draw the efficiency frontier in the costs-effectiveness plane. The app automatically identifies and excludes dominated and extended-dominated options from the ICER calculation.
This package contains functions for the classification and ranking of top candidate features, reconstruction of networks from adjacency matrices and data frames, analysis of the topology of the network and calculation of centrality measures, and identification of the most influential nodes. Also, a function is provided for running SIRIR model, which is the combination of leave-one-out cross validation technique and the conventional SIR model, on a network to unsupervisedly rank the true influence of vertices. Additionally, some functions have been provided for the assessment of dependence and correlation of two network centrality measures as well as the conditional probability of deviation from their corresponding means in opposite direction. Fred Viole and David Nawrocki (2013, ISBN:1490523995). Csardi G, Nepusz T (2006). "The igraph software package for complex network research." InterJournal, Complex Systems, 1695. Adopted algorithms and sources are referenced in function document.
Creation of tables of summary statistics or counts for clinical data (for TLFs'). These tables can be exported as in-text table (with the flextable package) for a Clinical Study Report (Word format) or a topline presentation (PowerPoint format), or as interactive table (with the DT package) to an html document for clinical data review.
In classification problems a monotone relation between some predictors and the classes may be assumed. In this package isoboost we propose new boosting algorithms, based on LogitBoost, that incorporate this isotonicity information, yielding more accurate and easily interpretable rules.
Offers a pipe-friendly alternative to the dplyr functions case_when() and if_else(), as well as a number of user-friendly simplifications for common use cases. These functions accept a vector as an optional first argument, allowing conditional statements to be built using the magrittr dot operator. The functions also coerce all outputs to the same type, meaning you no longer have to worry about using specific typed variants of NA or explicitly declaring integer outputs, and evaluate outputs somewhat lazily, so you don't waste time on long operations that won't be used.
This package provides an interface for image recognition using the Google Vision API <https://cloud.google.com/vision/> . Converts API data for features such as object detection and optical character recognition to data frames. The package also includes functions for analyzing image annotations.