Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Infix operators to detect, subset, and replace the elements matched by a given condition. The functions have several variants of operator types, including subsets, ranges, regular expressions and others. Implemented operators work on vectors, matrices, and lists.
This package provides a collection of statistical tests for genetic association studies and summary data based Mendelian randomization.
Call wrappers for Istanbul Metropolitan Municipality's Open Data Portal (Turkish: İstanbul BüyükŠehir Belediyesi Açık Veri Portalı) at <https://data.ibb.gov.tr/en/>.
An R interface to the InfluxDB time series database <https://www.influxdata.com>. This package allows you to fetch and write time series data from/to an InfluxDB server. Additionally, handy wrappers for the Influx Query Language (IQL) to manage and explore a remote database are provided.
The methods in this package adds to the functionality of the intamap package, such as bias correction and network optimization. Pebesma et al (2010) gives an overview of the methods behind and possible usage <doi:10.1016/j.cageo.2010.03.019>.
This package provides a tool to calculate and plot estimates from models in which an interaction between the main predictor and a continuous covariate has been specified. Methods used in the package refer to Harrell Jr FE (2015, ISBN:9783319330396); Durrleman S, Simon R. (1989) <doi:10.1002/sim.4780080504>; Greenland S. (1995) <doi:10.1097/00001648-199507000-00005>.
This package provides a comprehensive suite of tools for managing, processing, and analyzing data from the IFCB. I R FlowCytobot ('iRfcb') supports quality control, geospatial analysis, and preparation of IFCB data for publication in databases like <https://www.gbif.org>, <https://www.obis.org>, <https://emodnet.ec.europa.eu/en>, <https://shark.smhi.se/en/>, and <https://www.ecotaxa.org>. The package integrates with the MATLAB ifcb-analysis tool, which is described in Sosik and Olson (2007) <doi:10.4319/lom.2007.5.204>, and provides features for working with raw, manually classified, and machine learningâ classified image datasets. Key functionalities include image extraction, particle size distribution analysis, taxonomic data handling, and biomass concentration calculations, essential for plankton research.
This package provides a integrated variance correlation is proposed to measure the dependence between a categorical or continuous random variable and a continuous random variable or vector. This package is designed to estimate the new correlation coefficient with parametric and nonparametric approaches. Test of independence for different problems can also be implemented via the new correlation coefficient with this package.
An implementation of the Harris Corner Detection as described in the paper "An Analysis and Implementation of the Harris Corner Detector" by Sánchez J. et al (2018) available at <doi:10.5201/ipol.2018.229>. The package allows to detect relevant points in images which are characteristic to the digital image.
This package implements various novel and standard clustering statistics and other analyses useful for understanding the spread of infectious disease.
This package provides functions to assess the strength and statistical significance of the relationship between species occurrence/abundance and groups of sites [De Caceres & Legendre (2009) <doi:10.1890/08-1823.1>]. Also includes functions to measure species niche breadth using resource categories [De Caceres et al. (2011) <doi:10.1111/J.1600-0706.2011.19679.x>].
Manage a GitHub problem using R: wrangle issues, labels and milestones. It includes functions for storing, prioritizing (sorting), displaying, adding, deleting, and selecting (filtering) issues based on qualitative and quantitative information. Issues (labels and milestones) are written in lists and categorized into the S3 class to be easily manipulated as datasets in R.
This package provides a collection of Item Response Theory (IRT) and Computerized Adaptive Testing (CAT) functions that are used in psychometrics.
Implementations of the weighted Kozachenko-Leonenko entropy estimator and independence tests based on this estimator, (Kozachenko and Leonenko (1987) <http://mi.mathnet.ru/eng/ppi797>). Also includes a goodness-of-fit test for a linear model which is an independence test between covariates and errors.
Improved methods based on inverse probability weighting and outcome regression for causal inference and missing data problems.
This package provides utility functions to deal with Italian fiscal code ('codice fiscale').
This package provides a collection of functions for working with time series data, including functions for drawing, decomposing, and forecasting. Includes capabilities to compare multiple series and fit both additive and multiplicative models. Used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions. Holt (1957) <doi:10.1016/j.ijforecast.2003.09.015>, Winters (1960) <doi:10.1287/mnsc.6.3.324>, Cleveland, Cleveland, & Terpenning (1990) "STL: A Seasonal-Trend Decomposition Procedure Based on Loess".
Runs classical item analysis for multiple-choice test items and polytomous items (e.g., rating scales). The statistics reported in this package can be found in any measurement textbook such as Crocker and Algina (2006, ISBN:9780495395911).
Insurance datasets, which are often used in claims severity and claims frequency modelling. It helps testing new regression models in those problems, such as GLM, GLMM, HGLM, non-linear mixed models etc. Most of the data sets are applied in the project "Mixed models in ratemaking" supported by grant NN 111461540 from Polish National Science Center.
This package provides a small collection of various network data sets, to use with the igraph package: the Enron email network, various food webs, interactions in the immunoglobulin protein, the karate club network, Koenigsberg's bridges, visuotactile brain areas of the macaque monkey, UK faculty friendship network, domestic US flights network, etc.
Introductory statistics methods to accompany "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) by Beth Chance & Allan Rossman (2024) <https://rossmanchance.com/iscam4/>. Tools to introduce statistical concepts with a focus on simulation approaches. Functions are verbose, designed to provide ample output for students to understand what each function does. Additionally, most functions are accompanied with plots. The package is designed to be used in an educational setting alongside the ISCAM textbook.
This package provides a model that provides researchers with a powerful tool for the classification and study of native corn by aiding in the identification of racial complexes which are fundamental to Mexico's agriculture and culture. This package has been developed based on data collected by "Proyecto Global de Maà ces Nativos México", which has conducted exhaustive surveys across the country to document the qualitative and quantitative characteristics of different types of native maize. The trained model uses a robust and diverse dataset, enabling it to achieve an 80% accuracy in classifying maize racial complexes. The characteristics included in the analysis comprise geographic location, grain and cob colors, as well as various physical measurements, such as lengths and widths.
Instrumental variable estimation for linear models by two-stage least-squares (2SLS) regression or by robust-regression via M-estimation (2SM) or MM-estimation (2SMM). The main ivreg() model-fitting function is designed to provide a workflow as similar as possible to standard lm() regression. A wide range of methods is provided for fitted ivreg model objects, including extensive functionality for computing and graphing regression diagnostics in addition to other standard model tools.
Calculates various chance-corrected agreement coefficients (CAC) among 2 or more raters are provided. Among the CAC coefficients covered are Cohen's kappa, Conger's kappa, Fleiss kappa, Brennan-Prediger coefficient, Gwet's AC1/AC2 coefficients, and Krippendorff's alpha. Multiple sets of weights are proposed for computing weighted analyses. All of these statistical procedures are described in details in Gwet, K.L. (2014,ISBN:978-0970806284): "Handbook of Inter-Rater Reliability," 4th edition, Advanced Analytics, LLC.