Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to access the J-STAGE WebAPI and retrieve information published on J-STAGE <https://www.jstage.jst.go.jp/browse/-char/ja>.
This package provides tools for using the API of e-Stat (<https://www.e-stat.go.jp/>), a portal site for Japanese government statistics. Includes functions for automatic query generation, data collection and formatting.
Read Japanese city codes (<https://www.e-stat.go.jp/municipalities/cities>) to get city and prefecture names, or convert to city codes at different points in time. In addition, it merges or splits wards of designated cities and gets all city codes at a specific point in time.
Generates image data for fractals (Julia and Mandelbrot sets) on the complex plane in the given region and resolution. Benoit B Mandelbrot (1982).
An estimation method that can use computer simulations to approximate maximum-likelihood estimates even when the likelihood function can not be evaluated directly. It can be applied whenever it is feasible to conduct many simulations, but works best when the data is approximately Poisson distributed. It was originally designed for demographic inference in evolutionary biology (Naduvilezhath et al., 2011 <doi:10.1111/j.1365-294X.2011.05131.x>, Mathew et al., 2013 <doi:10.1002/ece3.722>). It has optional support for conducting coalescent simulation using the coala package.
All datasets and functions used in the german book "Statistik mit R und RStudio" by grosse Schlarmann (2010-2024) <https://www.produnis.de/R/>.
Runs resampling-based tests jointly, e.g., sign-flip score tests from Hemerik et al., (2020) <doi:10.1111/rssb.12369>, to allow for multivariate testing, i.e., weak and strong control of the Familywise Error Rate or True Discovery Proportion.
Estimate risk caused by two extreme and dependent forcing variables using bivariate extreme value models as described in Zheng, Westra, and Sisson (2013) <doi:10.1016/j.jhydrol.2013.09.054>; Zheng, Westra and Leonard (2014) <doi:10.1002/2013WR014616>; Zheng, Leonard and Westra (2015) <doi:10.2166/hydro.2015.052>.
This package provides tools for competing risks trials that allow simultaneous inference on recovery and mortality endpoints. Provides data preparation helpers, standard cumulative incidence estimators (restricted mean time gained/lost), and severity weighted extensions that integrate longitudinal ordinal outcomes to summarise treatment benefit. Methods follow Wen, Hu, and Wang (2023) Biometrics 79(3):1635-1645 <doi:10.1111/biom.13752>.
Allow to run jshint on JavaScript files with a R command or a RStudio addin. The report appears in the RStudio viewer pane.
This package creates interactive trees that can be included in Shiny apps and R markdown documents. A tree allows to represent hierarchical data (e.g. the contents of a directory). Similar to the shinyTree package but offers more features and options, such as the grid extension, restricting the drag-and-drop behavior, and settings for the search functionality. It is possible to attach some data to the nodes of a tree and then to get these data in Shiny when a node is selected. Also provides a Shiny gadget allowing to manipulate one or more folders, and a Shiny module allowing to navigate in the server side file system.
This package performs a permutation test on the difference between two location parameters, a permutation correlation test, a permutation F-test, the Siegel-Tukey test, a ratio mean deviance test. Also performs some graphing techniques, such as for confidence intervals, vector addition, and Fourier analysis; and includes functions related to the Laplace (double exponential) and triangular distributions. Performs power calculations for the binomial test.
This package provides a highly configurable jQuery plugin offering a simple interface to create complex queries/filters in Shiny'. The outputted rules can easily be parsed into a set of R and/or SQL queries and used to filter data. Custom parsing of the rules is also supported. For more information about jQuery QueryBuilder see <https://querybuilder.js.org/>.
An implementation of fast cluster-based permutation analysis (CPA) for densely-sampled time data developed in Maris & Oostenveld, 2007 <doi:10.1016/j.jneumeth.2007.03.024>. Supports (generalized, mixed-effects) regression models for the calculation of timewise statistics. Provides both a wholesale and a piecemeal interface to the CPA procedure with an emphasis on interpretability and diagnostics. Integrates Julia libraries MixedModels.jl and GLM.jl for performance improvements, with additional functionalities for interfacing with Julia from R powered by the JuliaConnectoR package.
Generates interactive Jellyfish plots to visualize spatiotemporal tumor evolution by integrating sample and phylogenetic trees into a unified plot. This approach provides an intuitive way to analyze tumor heterogeneity and evolution over time and across anatomical locations. The Jellyfish plot visualization design was first introduced by Lahtinen, Lavikka, et al. (2023, <doi:10.1016/j.ccell.2023.04.017>). This package also supports visualizing ClonEvol results, a tool developed by Dang, et al. (2017, <doi:10.1093/annonc/mdx517>), for analyzing clonal evolution from multi-sample sequencing data. The clonevol package is not available on CRAN but can be installed from its GitHub repository (<https://github.com/hdng/clonevol>).
The jscore() function in the package calculates the J-Score metric between two clustering assignments. The score is designed to address some problems with existing common metrics such as problem of matching. The details of J-score is described in Ahmadinejad and Liu. (2021) <arXiv:2109.01306>.
Miscellaneous tools and functions, including: generate descriptive statistics tables, format output, visualize relations among variables or check distributions, and generic functions for residual and model diagnostics.
This package implements penalised multivariate regression (i.e., for multiple outcomes and many features) by stacked generalisation (<doi:10.1093/bioinformatics/btab576>). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement. For optional comparisons, install remMap from GitHub (<https://github.com/cran/remMap>).
This package provides analysis tools for big data where the sample size is very large. It offers a suite of functions for fitting and predicting joint models, which allow for the simultaneous analysis of longitudinal and time-to-event data. This statistical methodology is particularly useful in medical research where there is often interest in understanding the relationship between a longitudinal biomarker and a clinical outcome, such as survival or disease progression. This can be particularly useful in a clinical setting where it is important to be able to predict how a patient's health status may change over time. Overall, this package provides a comprehensive set of tools for joint modeling of BIG data obtained as survival and longitudinal outcomes with both Bayesian and non-Bayesian approaches. Its versatility and flexibility make it a valuable resource for researchers in many different fields, particularly in the medical and health sciences.
We provide tools to estimate the individualized interval-valued dose rule (I2DR) that maximizes the expected beneficial clinical outcome for each individual and returns an optimal interval-valued dose, by using the jump Q-learning (JQL) method. The jump Q-learning method directly models the conditional mean of the response given the dose level and the baseline covariates via jump penalized least squares regression under the framework of Q learning. We develop a searching algorithm by dynamic programming in order to find the optimal I2DR with the time complexity O(n2) and spatial complexity O(n). To alleviate the effects of misspecification of the Q-function, a residual jump Q-learning is further proposed to estimate the optimal I2DR. The outcome of interest includes the best partition of the entire dosage of interest, the regression coefficients of each partition, and the value function under the estimated I2DR as well as the Wald-type confidence interval of value function constructed through the Bootstrap.
Template engine powered by the inja C++ library. Users write a template document, using syntax inspired by the Jinja Python package, and then render the final document by passing data from R. The template syntax supports features such as variables, loops, conditions and inheritance.
This package provides a set of functions to compute the Hodrick-Prescott (HP) filter with automatically selected jumps. The original HP filter extracts a smooth trend from a time series, and our version allows for a small number of automatically identified jumps. See Maranzano and Pelagatti (2024) <doi:10.2139/ssrn.4896170> for details.
In a typical experiment for the intuitive judgment of frequencies (JoF) different stimuli with different frequencies are presented. The participants consider these stimuli with a constant duration and give a judgment of frequency. These judgments can be simulated by formal models: PASS 1 and PASS 2 based on Sedlmeier (2002, ISBN:978-0198508632), MINERVA 2 baesd on Hintzman (1984) <doi:10.3758/BF03202365> and TODAM 2 based on Murdock, Smith & Bai (2001) <doi:10.1006/jmps.2000.1339>. The package provides an assessment of the frequency by determining the core aspects of these four models (attention, decay, and presented frequency) that can be compared to empirical results.
RStudio addins and Shiny modules for descriptive statistics, regression and survival analysis.