Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a shiny application for forensic kinship testing, based on the pedsuite R packages. KLINK is closely aligned with the (non-R) software Familias and FamLink', but offers several unique features, including visualisations and automated report generation. The calculation of likelihood ratios supports pairs of linked markers, and all common mutation models.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kst package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces.
This package contains functions to compute p-values for the one-sample and two-sample Kolmogorov-Smirnov (KS) tests and the two-sample Kuiper test for any fixed critical level and arbitrary (possibly very large) sample sizes. For the one-sample KS test, this package implements a novel, accurate and efficient method named Exact-KS-FFT, which allows the pre-specified cumulative distribution function under the null hypothesis to be continuous, purely discrete or mixed. In the two-sample case, it is assumed that both samples come from an unspecified (unknown) continuous, purely discrete or mixed distribution, i.e. ties (repeated observations) are allowed, and exact p-values of the KS and the Kuiper tests are computed. Note, the two-sample Kuiper test is often used when data samples are on the line or on the circle (circular data). To cite this package in publication: (for the use of the one-sample KS test) Dimitrina S. Dimitrova, Vladimir K. Kaishev, and Senren Tan. Computing the Kolmogorov-Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software. 2020; 95(10): 1--42. <doi:10.18637/jss.v095.i10>. (for the use of the two-sample KS and Kuiper tests) Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2024). The R functions KS2sample and Kuiper2sample: Efficient Exact Calculation of P-values of the Two-sample Kolmogorov-Smirnov and Kuiper Tests. submitted.
This package provides a multi-purpose and flexible k-meric enrichment analysis software. kmeRtone measures the enrichment of k-mers by comparing the population of k-mers in the case loci with a carefully devised internal negative control group, consisting of k-mers from regions close to, yet sufficiently distant from, the case loci to mitigate any potential sequencing bias. This method effectively captures both the local sequencing variations and broader sequence influences, while also correcting for potential biases, thereby ensuring more accurate analysis. The core functionality of kmeRtone is the SCORE() function, which calculates the susceptibility scores for k-mers in case and control regions. Case regions are defined by the genomic coordinates provided in a file by the user and the control regions can be constructed relative to the case regions or provided directly. The k-meric susceptibility scores are calculated by using a one-proportion z-statistic. kmeRtone is highly flexible by allowing users to also specify their target k-mer patterns and quantify the corresponding k-mer enrichment scores in the context of these patterns, allowing for a more comprehensive approach to understanding the functional implications of specific DNA sequences on a genomic scale (e.g., CT motifs upon UV radiation damage). Adib A. Abdullah, Patrick Pflughaupt, Claudia Feng, Aleksandr B. Sahakyan (2024) Bioinformatics (submitted).
This package provides a collection of personal helper functions to avoid redundancy in the spirit of the "Don't repeat yourself" principle of software development (<https://en.wikipedia.org/wiki/Don%27t_repeat_yourself>).
Estimation algorithms for Kullback-Leibler divergence between two probability distributions, based on one or two samples, and including uncertainty quantification. Distributions can be uni- or multivariate and continuous, discrete or mixed.
Nonparametric kernel distribution function estimation is performed. Three bandwidth selectors are implemented: the plug-in selectors of Altman and Leger and of Polansky and Baker, and the cross-validation selector of Bowman, Hall and Prvan. The exceedance function, the mean return period and the return level are also computed. For details, see Quintela-del-Rà o and Estévez-Pérez (2012) <doi:10.18637/jss.v050.i08>.
Functional magnetic resonance imaging ('fMRI') data from the Kirby21 reproducibility study <doi:10.1016/j.neuroimage.2010.11.047>.
Identification of putative causal variants in genome-wide association studies with trio and duo families. The package calculates the W feature statistics from KnockoffTrio and p-values from the family-based association test (FBAT) using trio and/or duo data. Compared to previous versions, a significant improvement has been made in Version 1.1.0 to allow the package to be applied not only to trio families but also to duo families. The package implements the methods in the paper: "Yang, Y., Wang, C., Liu, L., Buxbaum, J., He, Z., & Ionita-Laza, I. (2022). KnockoffTrio: A knockoff framework for the identification of putative causal variants in genome-wide association studies with trio design. The American Journal of Human Genetics, 109(10), 1761-1776.".
This package provides a collection of useful functions not found anywhere else, mainly for programming: Pretty intervals, generalized lagged differences, checking containment in an interval, and an alternative interface to assign().
Control your keyboard and mouse with R code by simulating key presses and mouse clicks. The input simulation is implemented with the Windows API.
Selection of k in k-means clustering based on Pham et al. paper ``Selection of k in k-means clustering''.
Given a set of points around a knee curve, analyzes first and second derivatives to find knee points.
Estimate agreement of a group of raters with a gold standard rating on a nominal scale. For a single gold standard rater the average pairwise agreement of raters with this gold standard is provided. For a group of (gold standard) raters the approach of S. Vanbelle, A. Albert (2009) <doi:10.1007/s11336-009-9116-1> is implemented. Bias and standard error are estimated via delete-1 jackknife.
Miscellaneous functions for classification and visualization, e.g. regularized discriminant analysis, sknn() kernel-density naive Bayes, an interface to svmlight and stepclass() wrapper variable selection for supervised classification, partimat() visualization of classification rules and shardsplot() of cluster results as well as kmodes() clustering for categorical data, corclust() variable clustering, variable extraction from different variable clustering models and weight of evidence preprocessing.
Dataset and functions to explore quality of literary novels. The package is a part of the Riddle of Literary Quality project, and it contains the data of a reader survey about fiction in Dutch, a description of the novels the readers rated, and the results of stylistic measurements of the novels. The package also contains functions to combine, analyze, and visualize these data. For more details, see: Eder M, van Zundert J, Lensink S, van Dalen-Oskam K (2022). Replicating The Riddle of Literary Quality: The litRiddle package for R. In _Digital Humanities 2022: Conference Abstracts_, 636-637.
Provide methods to perform customized inference at individual level by taking contextual covariates into account. Three main functions are provided in this package: (i) LASER(): it generates specially-designed artificial relevant samples for a given case; (ii) g2l.proc(): computes customized fdr(z|x); and (iii) rEB.proc(): performs empirical Bayes inference based on LASERs. The details can be found in Mukhopadhyay, S., and Wang, K (2021, <arXiv:2004.09588>).
Data sets for Chirok Han (2024, ISBN:979-11-303-1964-3, "Lectures on Econometrics"). Students, teachers, and self-learners will find the data sets essential for replicating the results in the book.
This package provides tools to help storing and handling case line list data. The linelist class adds a tagging system to classical data.frame objects to identify key epidemiological data such as dates of symptom onset, epidemiological case definition, age, gender or disease outcome. Once tagged, these variables can be seamlessly used in downstream analyses, making data pipelines more robust and reliable.
Generates quotes from Lero Lero', a database for meaningless sentences filled with corporate buzzwords, intended to be used as corporate lorem ipsum (see <http://www.lerolero.com/> for more information). Unfortunately, quotes are currently portuguese-only.
This package provides a lasso-based method for building mechanistic models using the SAMBA algorithm (Stochastic Approximation for Model Building Algorithm) (M Prague, M Lavielle (2022) <doi:10.1002/psp4.12742>). The package extends the Rsmlx package (version 2024.1.0) to better handle high-dimensional data. It relies on the Monolix software (version 2024R1; see (<https://monolixsuite.slp-software.com/monolix/2024R1/>), which must be installed beforehand.
This package provides three classes: Queue, PriorityQueue and Stack. Queue is just a "plain vanilla" FIFO queue; PriorityQueue orders items according to priority. Stack implements LIFO.
Outlier detection using leave-one-out kernel density estimates and extreme value theory. The bandwidth for kernel density estimates is computed using persistent homology, a technique in topological data analysis. Using peak-over-threshold method, a generalized Pareto distribution is fitted to the log of leave-one-out kde values to identify outliers.
Estimation of a multi-group count regression models (i.e., Poisson, negative binomial) with latent covariates. This packages provides two extensions compared to ordinary count regression models based on a generalized linear model: First, measurement models for the predictors can be specified allowing to account for measurement error. Second, the count regression can be simultaneously estimated in multiple groups with stochastic group weights. The marginal maximum likelihood estimation is described in Kiefer & Mayer (2020) <doi:10.1080/00273171.2020.1751027>.