Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Hidden Markov Model (HMM) based on symmetric lambda distribution framework is implemented for the study of return time-series in the financial market. Major features in the S&P500 index, such as regime identification, volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM cleanly. Univariate symmetric lambda distribution is essentially a location-scale family of exponential power distribution. Such distribution is suitable for describing highly leptokurtic time series obtained from the financial market. It provides a theoretically solid foundation to explore such data where the normal distribution is not adequate. The HMM implementation follows closely the book: "Hidden Markov Models for Time Series", by Zucchini, MacDonald, Langrock (2016).
European Commission's Labour Market Policy (LMP) database (<https://webgate.ec.europa.eu/empl/redisstat/databrowser/explore/all/lmp?lang=en&display=card&sort=category>) provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. It covers the EU countries and Norway. This package provides functions for downloading and importing the LMP data and metadata (codelists).
Set of tools for analyzing lactate thresholds from a step incremental test to exhaustion. Easily analyze the methods Log-log, Onset of Blood Lactate Accumulation (OBLA), Baseline plus (Bsln+), Dmax, Lactate Turning Point (LTP), and Lactate / Intensity ratio (LTratio) in cycling, running, or swimming. Beaver WL, Wasserman K, Whipp BJ (1985) <doi:10.1152/jappl.1985.59.6.1936>. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) <doi:10.1055/s-2008-1025824>. Kindermann W, Simon G, Keul J (1979) <doi:10.1007/BF00421101>. Skinner JS, Mclellan TH (1980) <doi:10.1080/02701367.1980.10609285>. Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, Keul J (1990) PMID 2408033. Zoladz JA, Rademaker AC, Sargeant AJ (1995) <doi:10.1113/jphysiol.1995.sp020959>. Cheng B, Kuipers H, Snyder A, Keizer H, Jeukendrup A, Hesselink M (1992) <doi:10.1055/s-2007-1021309>. Bishop D, Jenkins DG, Mackinnon LT (1998) <doi:10.1097/00005768-199808000-00014>. Hughson RL, Weisiger KH, Swanson GD (1987) <doi:10.1152/jappl.1987.62.5.1975>. Jamnick NA, Botella J, Pyne DB, Bishop DJ (2018) <doi:10.1371/journal.pone.0199794>. Hofmann P, Tschakert G (2017) <doi:10.3389/fphys.2017.00337>. Hofmann P, Pokan R, von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) <doi:10.1097/00005768-199706000-00005>. Pokan R, Hofmann P, Von Duvillard SP, et al. (1997) <doi:10.1097/00005768-199708000-00009>. Dickhuth H-H, Yin L, Niess A, et al. (1999) <doi:10.1055/s-2007-971105>.
An efficient procedure for feature selection for generalized linear models with L0 penalty, including linear, logistic, Poisson, gamma, inverse Gaussian regression. Adaptive ridge algorithms are used to fit the models.
Change-point detection algorithm with label constraints and a penalty for each change outside of labels. Read TD Hocking, A Srivastava (2023) <doi:10.1007/s00180-022-01238-z> for details.
Implementation of several phenotype-based family genetic risk scores with unified input data and data preparation functions to help facilitate the required data preparation and management. The implemented family genetic risk scores are the extended liability threshold model conditional on family history from Pedersen (2022) <doi:10.1016/j.ajhg.2022.01.009> and Pedersen (2023) <https://www.nature.com/articles/s41467-023-41210-z>, Pearson-Aitken Family Genetic Risk Scores from Krebs (2024) <doi:10.1016/j.ajhg.2024.09.009>, and family genetic risk score from Kendler (2021) <doi:10.1001/jamapsychiatry.2021.0336>.
High dimensional longitudinal data analysis with Markov Chain Monte Carlo(MCMC). Currently support mixed effect regression with or without missing observations by considering covariance structures. It provides estimates by missing at random and missing not at random assumptions. In this R package, we present Bayesian approaches that statisticians and clinical researchers can easily use. The functions methodology is based on the book "Bayesian Approaches in Oncology Using R and OpenBUGS" by Bhattacharjee A (2020) <doi:10.1201/9780429329449-14>.
Several leaflet plugins are integrated, which are available as extension to the leaflet package.
Print vectors (and data frames) of floating point numbers using a non-scientific format optimized for human readers. Vectors of numbers are rounded using significant digits, aligned at the decimal point, and all zeros trailing the decimal point are dropped. See: Wright (2016). Lucid: An R Package for Pretty-Printing Floating Point Numbers. In JSM Proceedings, Statistical Computing Section. Alexandria, VA: American Statistical Association. 2270-2279.
Robust test(s) for model diagnostics in regression. The current version contains a robust test for functional specification (linearity). The test is based on the robust bounded-influence test by Heritier and Ronchetti (1994) <doi:10.1080/01621459.1994.10476822>.
This package performs analysis of Differential Item Functioning (DIF) for dichotomous and polytomous items using an iterative hybrid of ordinal logistic regression and item response theory (IRT) according to Choi, Gibbons, and Crane (2011) <doi:10.18637/jss.v039.i08>.
Time-dependent Receiver Operating Characteristic curves, Area Under the Curve, and Net Reclassification Indexes for repeated measures. It is based on methods in Barbati and Farcomeni (2017) <doi:10.1007/s10260-017-0410-2>.
Create custom labels, badges, certificates and other documents. Automate the production of potentially large numbers of herbarium and collection labels, accreditation badges, attendance and participation certificates, etc, and deliver them automatically. Documents are generated in PDF format, which requires a working installation of LaTeX', such as TinyTeX'.
This package provides tools to retrieve and summarize taxonomic information and synonymy data for reptile species using data scraped from The Reptile Database website (<https://reptile-database.reptarium.cz/>). Outputs include clean and structured data frames useful for ecological, evolutionary, and conservation research.
Simplifies the whole process of creating stacked tilted maps, that are often used in scientific publications to show different environmental layers for a geographical region. Tilting maps and layering them allows to easily draw visual correlations between these environmental layers.
Estimate the sufficient dimension reduction space using sparsed sliced inverse regression via Lasso (Lasso-SIR) introduced in Lin, Zhao, and Liu (2019) <doi:10.1080/01621459.2018.1520115>. The Lasso-SIR is consistent and achieve the optimal convergence rate under certain sparsity conditions for the multiple index models.
Spatial and spatio-temporal modelling of point patterns using the log-Gaussian Cox process. Bayesian inference for spatial, spatiotemporal, multivariate and aggregated point processes using Markov chain Monte Carlo. See Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2015) <doi:10.18637/jss.v063.i07>.
Lexical response data is a package that can be used for processing cued-recall, free-recall, and sentence responses from memory experiments.
Estimate covariance matrices that contain low rank and sparse components.
This package provides a lasso-based method for building mechanistic models using the SAMBA algorithm (Stochastic Approximation for Model Building Algorithm) (M Prague, M Lavielle (2022) <doi:10.1002/psp4.12742>). The package extends the Rsmlx package (version 2024.1.0) to better handle high-dimensional data. It relies on the Monolix software (version 2024R1; see (<https://monolixsuite.slp-software.com/monolix/2024R1/>), which must be installed beforehand.
Simulate expected equilibrium length composition, yield-per-recruit, and the spawning potential ratio (SPR) using the length-based SPR (LBSPR) model. Fit the LBSPR model to length data to estimate selectivity, relative apical fishing mortality, and the spawning potential ratio for data-limited fisheries. See Hordyk et al (2016) <doi:10.1139/cjfas-2015-0422> for more information about the LBSPR assessment method.
This package contains (1) event-related brain potential data recorded from 10 participants at electrodes Fz, Cz, Pz, and Oz (0--300 ms) in the context of Antoine Tremblay's PhD thesis (Tremblay, 2009); (2) ERP amplitudes at electrode Fz restricted to the 100 to 175 millisecond time window; and (3) plotting data generated from a linear mixed-effects model.
This package performs recursive partitioning of linear and nonlinear mixed effects models, specifically for longitudinal data. The package is an extension of the original longRPart package by Stewart and Abdolell (2013) <https://cran.r-project.org/package=longRPart>.
The least-squares Monte Carlo (LSM) simulation method is a popular method for the approximation of the value of early and multiple exercise options. LSMRealOptions provides implementations of the LSM simulation method to value American option products and capital investment projects through real options analysis. LSMRealOptions values capital investment projects with cash flows dependent upon underlying state variables that are stochastically evolving, providing analysis into the timing and critical values at which investment is optimal. LSMRealOptions provides flexibility in the stochastic processes followed by underlying assets, the number of state variables, basis functions and underlying asset characteristics to allow a broad range of assets to be valued through the LSM simulation method. Real options projects are further able to be valued whilst considering construction periods, time-varying initial capital expenditures and path-dependent operational flexibility including the ability to temporarily shutdown or permanently abandon projects after initial investment has occurred. The LSM simulation method was first presented in the prolific work of Longstaff and Schwartz (2001) <doi:10.1093/rfs/14.1.113>.