Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Local partial likelihood estimation by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confidence band is a set of tools to test the covariates-biomarker interaction for survival data. Test for the covariates-biomarker interaction using the bootstrap method and the asymptotic method with simultaneous confidence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).
Insieme di funzioni di supporto al volume "Laboratorio di Statistica con R", Iacus-Masarotto, MacGraw-Hill Italia, 2006. This package contains sets of functions defined in "Laboratorio di Statistica con R", Iacus-Masarotto, MacGraw-Hill Italia, 2006. Function names and docs are in italian as well.
This package provides a single analysis path that includes distance-based ordination, global tests of any effect of the microbiome, and tests of the effects of individual taxa with false-discovery-rate (FDR) control. It accommodates both continuous and discrete covariates as well as interaction terms to be tested either singly or in combination, allows for adjustment of confounding covariates, and uses permutation-based p-values that can control for sample correlations. It can be applied to transformed data, and an omnibus test can combine results from analyses conducted on different transformation scales. It can also be used for testing presence-absence associations based on infinite number of rarefaction replicates, testing mediation effects of the microbiome, analyzing censored time-to-event outcomes, and for compositional analysis by fitting linear models to centered-log-ratio taxa count data.
This package performs power and sample size calculation for non-proportional hazards model using the Fleming-Harrington family of weighted log-rank tests. The sequentially calculated log-rank test score statistics are assumed to have independent increments as characterized in Anastasios A. Tsiatis (1982) <doi:10.1080/01621459.1982.10477898>. The mean and variance of log-rank test score statistics are calculated based on Kaifeng Lu (2021) <doi:10.1002/pst.2069>. The boundary crossing probabilities are calculated using the recursive integration algorithm described in Christopher Jennison and Bruce W. Turnbull (2000, ISBN:0849303168). The package can also be used for continuous, binary, and count data. For continuous data, it can handle missing data through mixed-model for repeated measures (MMRM). In crossover designs, it can estimate direct treatment effects while accounting for carryover effects. For binary data, it can design Simon's 2-stage, modified toxicity probability-2 (mTPI-2), and Bayesian optimal interval (BOIN) trials. For count data, it can design group sequential trials for negative binomial endpoints with censoring. Additionally, it facilitates group sequential equivalence trials for all supported data types. Moreover, it can design adaptive group sequential trials for changes in sample size, error spending function, number and spacing or future looks. Finally, it offers various options for adjusted p-values, including graphical and gatekeeping procedures.
Fast implementations to compute the genetic covariance matrix, the Jaccard similarity matrix, the s-matrix (the weighted Jaccard similarity matrix), and the (classic or robust) genomic relationship matrix of a (dense or sparse) input matrix (see Hahn, Lutz, Hecker, Prokopenko, Cho, Silverman, Weiss, and Lange (2020) <doi:10.1002/gepi.22356>). Full support for sparse matrices from the R-package Matrix'. Additionally, an implementation of the power method (von Mises iteration) to compute the largest eigenvector of a matrix is included, a function to perform an automated full run of global and local correlations in population stratification data, a function to compute sliding windows, and a function to invert minor alleles and to select those variants/loci exceeding a minimal cutoff value. New functionality in locStra allows one to extract the k leading eigenvectors of the genetic covariance matrix, Jaccard similarity matrix, s-matrix, and genomic relationship matrix via fast PCA without actually computing the similarity matrices. The fast PCA to compute the k leading eigenvectors can now also be run directly from bed'+'bim'+'fam files.
This package provides a ggplot2 extension that focusses on expanding the plotter's arsenal of guides. Guides in ggplot2 include axes and legends. legendry offers new axes and annotation options, as well as new legends and colour displays.
This package provides functions to estimate the intensity function and its derivative of a given order of a multiplicative counting process using the local polynomial method.
Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) <doi:10.1080/10705511.2017.1403287>, for item response theory models in Andersson, B., and Xin, T. (2021) <doi:10.3102/1076998620945199>, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) <doi:10.1016/j.csda.2023.107710>. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models.
Improve your text analysis with languagelayer <https://languagelayer.com>, a powerful language detection API.
Computes the probability density function, the cumulative distribution function, the hazard rate function, the quantile function and random generation for Lindley Power Series distributions, see Nadarajah and Si (2018) <doi:10.1007/s13171-018-0150-x>.
Due to lack of proper inference procedure and software, the ordinary linear regression model is seldom used in practice for the analysis of right censored data. This paper presents an S-Plus/R program that implements a recently developed inference procedure (Jin, Lin and Ying, 2006) <doi:10.1093/biomet/93.1.147> for the accelerated failure time model based on the least-squares principle.
Allows researchers to conduct multivariate statistical analyses of survey data with list experiments. This survey methodology is also known as the item count technique or the unmatched count technique and is an alternative to the commonly used randomized response method. The package implements the methods developed by Imai (2011) <doi:10.1198/jasa.2011.ap10415>, Blair and Imai (2012) <doi:10.1093/pan/mpr048>, Blair, Imai, and Lyall (2013) <doi:10.1111/ajps.12086>, Imai, Park, and Greene (2014) <doi:10.1093/pan/mpu017>, Aronow, Coppock, Crawford, and Green (2015) <doi:10.1093/jssam/smu023>, Chou, Imai, and Rosenfeld (2017) <doi:10.1177/0049124117729711>, and Blair, Chou, and Imai (2018) <https://imai.fas.harvard.edu/research/files/listerror.pdf>. This includes a Bayesian MCMC implementation of regression for the standard and multiple sensitive item list experiment designs and a random effects setup, a Bayesian MCMC hierarchical regression model with up to three hierarchical groups, the combined list experiment and endorsement experiment regression model, a joint model of the list experiment that enables the analysis of the list experiment as a predictor in outcome regression models, a method for combining list experiments with direct questions, and methods for diagnosing and adjusting for response error. In addition, the package implements the statistical test that is designed to detect certain failures of list experiments, and a placebo test for the list experiment using data from direct questions.
This package provides a unified interface for interacting with Large Language Models (LLMs) through various providers including OpenAI <https://platform.openai.com/docs/api-reference>, Ollama <https://ollama.com/>, and other OpenAI-compatible APIs. Features include automatic connection testing, max_tokens limit auto-adjustment, structured JSON responses with schema validation, interactive JSON schema generation, prompt templating, and comprehensive diagnostics.
Classical tests of goodness-of-fit aim to validate the conformity of a postulated model to the data under study. In their standard formulation, however, they do not allow exploring how the hypothesized model deviates from the truth nor do they provide any insight into how the rejected model could be improved to better fit the data. To overcome these shortcomings, we establish a comprehensive framework for goodness-of-fit which naturally integrates modeling, estimation, inference and graphics. In this package, the deviance tests and comparison density plots are performed to conduct the LP smoothed inference, where the letter L denotes nonparametric methods based on quantiles and P stands for polynomials. Simulations methods are used to perform variance estimation, inference and post-selection adjustments. Algeri S. and Zhang X. (2020) <arXiv:2005.13011>.
Constructs tree for continuous longitudinal data and survival data using baseline covariates as partitioning variables according to the LongCART and SurvCART algorithm, respectively. Later also included functions to calculate conditional power and predictive power of success based on interim results and probability of success for a prospective trial.
This package provides Shiny gadgets to search, type, and insert IPA symbols into documents or scripts, requiring only knowledge about phonetics or X-SAMPA'. Also provides functions to facilitate the rendering of IPA symbols in LaTeX and PDF format, making IPA symbols properly rendered in all output formats. A minimal R Markdown template for authoring Linguistics related documents is also bundled with the package. Some helper functions to facilitate authoring with R Markdown is also provided.
Estimate covariance matrices that contain low rank and sparse components.
An implementation of the Input-Output model developed by Wassily Leontief that represents the interdependencies between different sectors of a national economy or different regional economies.
The reference implementation of model equations and default parameters for the toxicokinetic-toxicodynamic (TKTD) model of the Lemna (duckweed) aquatic plant. Lemna is a standard test macrophyte used in ecotox effect studies. The model was described and published by the SETAC Europe Interest Group Effect Modeling. It is a refined description of the Lemna TKTD model published by Schmitt et al. (2013) <doi:10.1016/j.ecolmodel.2013.01.017>.
This package provides instrumental variable estimation of treatment effects when both the endogenous treatment and its instrument are binary. Applicable to both binary and continuous outcomes.
Non-parametric prediction of survival outcomes for mixture data that incorporates covariates and a landmark time. Details are described in Garcia (2021) <doi:10.1093/biostatistics/kxz052>.
Fit linear models based on periodic splines, moderate model coefficients using multivariate adaptive shrinkage, then compute properties of the moderated curves.
The leader clustering algorithm provides a means for clustering a set of data points. Unlike many other clustering algorithms it does not require the user to specify the number of clusters, but instead requires the approximate radius of a cluster as its primary tuning parameter. The package provides a fast implementation of this algorithm in n-dimensions using Lp-distances (with special cases for p=1,2, and infinity) as well as for spatial data using the Haversine formula, which takes latitude/longitude pairs as inputs and clusters based on great circle distances.
Maximum likelihood estimation of log-binomial regression with special functionality when the MLE is on the boundary of the parameter space.