Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Local Mean Decomposition is an iterative and self-adaptive approach for demodulating, processing, and analyzing multi-component amplitude modulated and frequency modulated signals. This R package is based on the approach suggested by Smith (2005) <doi:10.1098/rsif.2005.0058> and the Python library PyLMD'.
Companion toolbox for structural equation models fitted with lavaan'. Provides post-estimation diagnostics and graphics that operate directly on a fitted object using its estimates and covariance, and refits auxiliary models when needed. The package relies on lavaan (Rosseel, 2012) <doi:10.18637/jss.v048.i02>.
Originally design to characterise Aqueous Two Phase Systems, LLSR provide a simple way to analyse experimental data and obtain phase diagram parameters, among other properties, systematically. The package will include (every other update) new functions in order to comprise useful tools in liquid-liquid extraction research.
This package provides string similarity calculations inspired by the Python thefuzz package. Compare strings by edit distance, similarity ratio, best matching substring, ordered token matching and set-based token matching. A range of edit distance measures are available thanks to the stringdist package.
This package provides functions to calculate lunar and other related environmental covariates.
Adds smoothing spline modelling capability to nlme. Fits smoothing spline terms in Gaussian linear and nonlinear mixed-effects models.
Classical tests of goodness-of-fit aim to validate the conformity of a postulated model to the data under study. In their standard formulation, however, they do not allow exploring how the hypothesized model deviates from the truth nor do they provide any insight into how the rejected model could be improved to better fit the data. To overcome these shortcomings, we establish a comprehensive framework for goodness-of-fit which naturally integrates modeling, estimation, inference and graphics. In this package, the deviance tests and comparison density plots are performed to conduct the LP smoothed inference, where the letter L denotes nonparametric methods based on quantiles and P stands for polynomials. Simulations methods are used to perform variance estimation, inference and post-selection adjustments. Algeri S. and Zhang X. (2020) <arXiv:2005.13011>.
Analysis of stock data ups and downs trend, the stock technical analysis indicators function have trend line, reversal pattern and market trend.
The lognormal distribution (Limpert et al. (2001) <doi:10.1641/0006-3568(2001)051%5B0341:lndats%5D2.0.co;2>) can characterize uncertainty that is bounded by zero. This package provides estimation of distribution parameters, computation of moments and other basic statistics, and an approximation of the distribution of the sum of several correlated lognormally distributed variables (Lo 2013 <doi:10.12988/ams.2013.39511>) and the approximation of the difference of two correlated lognormally distributed variables (Lo 2012 <doi:10.1155/2012/838397>).
Principal component analysis (PCA) is one of the most widely used data analysis techniques. This package provides a series of vignettes explaining PCA starting from basic concepts. The primary purpose is to serve as a self-study resource for anyone wishing to understand PCA better. A few convenience functions are provided as well.
Calculates insurance reserves and equivalence premiums using advanced numerical methods, including the Runge-Kutta algorithm and product integrals for transition probabilities. This package is useful for actuarial analyses and life insurance modeling, facilitating accurate financial projections.
Generate concentration-time profiles from linear pharmacokinetic (PK) systems, possibly with first-order absorption or zero-order infusion, possibly with one or more peripheral compartments, and possibly under steady-state conditions. Single or multiple doses may be specified. Secondary (derived) PK parameters (e.g. Cmax, Ctrough, AUC, Tmax, half-life, etc.) are computed.
Conducts various numerical analyses and simulations in population genetics and evolutionary theory, primarily for the purpose of teaching (and learning about) key concepts in population & quantitative genetics, and evolutionary theory.
Real-time quantitative polymerase chain reaction (qPCR) data sets by Lievens et al. (2012) <doi:10.1093/nar/gkr775>. Provides one single tabular tidy data set in long format, encompassing three dilution series, targeted against the soybean Lectin endogene. Each dilution series was assayed in one of the following PCR-efficiency-modifying conditions: no PCR inhibition, inhibition by isopropanol and inhibition by tannic acid. The inhibitors were co-diluted along with the dilution series. The co-dilution series consists of a five-point, five-fold serial dilution. For each concentration there are 18 replicates. Each amplification curve is 60 cycles long. Original raw data file is available at the Supplementary Data section at Nucleic Acids Research Online <doi:10.1093/nar/gkr775>.
Create lipidome-wide heatmaps of statistics with the lipidomeR'. The lipidomeR provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the lipidomeR helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.
This package provides functions to estimate the intensity function and its derivative of a given order of a multiplicative counting process using the local polynomial method.
This package provides a set of functions that allow stationary analysis and locally stationary time series analysis.
Exact and approximation algorithms for variable-subset selection in ordinary linear regression models. Either compute all submodels with the lowest residual sum of squares, or determine the single-best submodel according to a pre-determined statistical criterion. Hofmann et al. (2020) <doi:10.18637/jss.v093.i03>.
Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skews, cross-loadings, wording effects, population errors, and local dependencies can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011) <doi:10.1177/0013164410389489>.
An updated implementation of R package ranger by Wright et al, (2017) <doi:10.18637/jss.v077.i01> for training and predicting from random forests, particularly suited to high-dimensional data, and for embedding in Multiple Imputation by Chained Equations (MICE) by van Buuren (2007) <doi:10.1177/0962280206074463>. Ensembles of classification and regression trees are currently supported. Sparse data of class dgCMatrix (R package Matrix') can be directly analyzed. Conventional bagged predictions are available alongside an efficient prediction for MICE via the algorithm proposed by Doove et al (2014) <doi:10.1016/j.csda.2013.10.025>. Trained forests can be written to and read from storage. Survival and probability forests are not supported in the update, nor is data of class gwaa.data (R package GenABEL'); use the original ranger package for these analyses.
This package provides functions for genome-wide association studies (GWAS)/gene-environment-wide interaction studies (GEWIS) with longitudinal outcomes and exposures. He et al. (2017) "Set-Based Tests for Gene-Environment Interaction in Longitudinal Studies" and He et al. (2017) "Rare-variant association tests in longitudinal studies, with an application to the Multi-Ethnic Study of Atherosclerosis (MESA)".
This package contains functions to help create log files. The package aims to overcome the difficulty of the base R sink() command. The log_print() function will print to both the console and the file log, without interfering in other write operations.
Analyze graph/network data using L1 centrality and prestige. Functions for deriving global, local, and group L1 centrality/prestige are provided. Routines for visual inspection of a graph/network are also provided. Details are in Kang and Oh (2025a) <doi:10.1080/01621459.2025.2520467>, Kang and Oh (2025b) <doi:10.1080/00031305.2025.2563730>, and Kang (2025) <doi:10.23170/snu.000000188358.11032.0001856>.
Estimation of life expectancy and Life Years Lost (LYL, or lillies for short) for a given population, for example those with a given disease or condition. In addition, the package can be used to compare estimates from different populations, or to estimate confidence intervals. Technical details of the method are available in Plana-Ripoll et al. (2020) <doi:10.1371/journal.pone.0228073> and Andersen (2017) <doi:10.1002/sim.7357>.