Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for creating and using lenses to simplify data manipulation. Lenses are composable getter/setter pairs for working with data in a purely functional way. Inspired by the Haskell library lens (Kmett, 2012) <https://hackage.haskell.org/package/lens>. For a fairly comprehensive (and highly technical) history of lenses please see the lens wiki <https://github.com/ekmett/lens/wiki/History-of-Lenses>.
Implementations of most of the existing proximity-based methods of link prediction in graphs. Among the 20 implemented methods are e.g.: Adamic L. and Adar E. (2003) <doi:10.1016/S0378-8733(03)00009-1>, Leicht E., Holme P., Newman M. (2006) <doi:10.1103/PhysRevE.73.026120>, Zhou T. and Zhang Y (2009) <doi:10.1140/epjb/e2009-00335-8>, and Fouss F., Pirotte A., Renders J., and Saerens M. (2007) <doi:10.1109/TKDE.2007.46>.
This package provides Shiny widgets and theme that support a Library Computer Access/Retrieval System (LCARS) aesthetic for Shiny apps. The package also includes functions for adding a minimal LCARS theme to static ggplot2 graphs. More details about LCARS can be found at <https://en.wikipedia.org/wiki/LCARS>.
This package contains functions to estimate a penalized regression model using 3CoSE algorithm, see Weber, Striaukas, Schumacher Binder (2018) <doi:10.2139/ssrn.3211163>.
Fits generalized estimating equations with L1 regularization to longitudinal data with high dimensional covariates. Use a efficient iterative composite gradient descent algorithm.
This package provides a wrapper built around the libLBFGS optimization library by Naoaki Okazaki. The lbfgs package implements both the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and the Orthant-Wise Quasi-Newton Limited-Memory (OWL-QN) optimization algorithms. The L-BFGS algorithm solves the problem of minimizing an objective, given its gradient, by iteratively computing approximations of the inverse Hessian matrix. The OWL-QN algorithm finds the optimum of an objective plus the L1-norm of the problem's parameters. The package offers a fast and memory-efficient implementation of these optimization routines, which is particularly suited for high-dimensional problems.
This package provides functions to fit log-multiplicative models using gnm', with support for convenient printing, plots, and jackknife/bootstrap standard errors. For complex survey data, models can be fitted from design objects from the survey package. Currently supported models include UNIDIFF (Erikson & Goldthorpe, 1992), a.k.a. log-multiplicative layer effect model (Xie, 1992) <doi:10.2307/2096242>, and several association models: Goodman (1979) <doi:10.2307/2286971> row-column association models of the RC(M) and RC(M)-L families with one or several dimensions; two skew-symmetric association models proposed by Yamaguchi (1990) <doi:10.2307/271086> and by van der Heijden & Mooijaart (1995) <doi:10.1177/0049124195024001002> Functions allow computing the intrinsic association coefficient (see Bouchet-Valat (2022) <doi:10.1177/0049124119852389>) and the Altham (1970) index <doi:10.1111/j.2517-6161.1970.tb00816.x>, including via the Bayes shrinkage estimator proposed by Zhou (2015) <doi:10.1177/0081175015570097>; and the RAS/IPF/Deming-Stephan algorithm.
This package provides tools for model specification in the latent variable framework (add-on to the lava package). The package contains three main functionalities: Wald tests/F-tests with improved control of the type 1 error in small samples, adjustment for multiple comparisons when searching for local dependencies, and adjustment for multiple comparisons when doing inference for multiple latent variable models.
Simple functions to lookup items in key-value pairs. See Mehta (2021) <doi:10.1007/978-1-4842-6613-7_6>.
The proposed method aims at predicting the longitudinal mean response trajectory by a kernel-based estimator. The kernel estimator is constructed by imposing weights based on subject-wise similarity on L2 metric space between predictor trajectories as well as time proximity. Users could also perform variable selections to derive functional predictors with predictive significance by the proposed multiplicative model with multivariate Gaussian kernels.
This package provides a suite of functions for reading in a rate file in XML format, stratify a cohort, and calculate SMRs from the stratified cohort and rate file.
This is a Neural Network regression model implementation using Keras', consisting of 10 Long Short-Term Memory layers that are fully connected along with the rest of the inputs.
This is for code management functions, NLP tools, a Monty Hall simulator, and for implementing my own variable reduction technique called Feed Reduction. The Feed Reduction technique is not yet published, but is merely a tool for implementing a series of binary neural networks meant for reducing data into N dimensions, where N is the number of possible values of the response variable.
This package provides test of second-order stationarity for time series (for dyadic and arbitrary-n length data). Provides localized autocovariance, with confidence intervals, for locally stationary (nonstationary) time series. See Nason, G P (2013) "A test for second-order stationarity and approximate confidence intervals for localized autocovariance for locally stationary time series." Journal of the Royal Statistical Society, Series B, 75, 879-904. <doi:10.1111/rssb.12015>.
This package provides a collection of various R functions for the purpose of Luminescence dating data analysis. This includes, amongst others, data import, export, application of age models, curve deconvolution, sequence analysis and plotting of equivalent dose distributions.
This package provides a collection of colour palettes inspired by some of our dearest butterfly species. This package provides continuous and categorical palettes, including some colour blind friendly options.
The lognormal distribution (Limpert et al. (2001) <doi:10.1641/0006-3568(2001)051%5B0341:lndats%5D2.0.co;2>) can characterize uncertainty that is bounded by zero. This package provides estimation of distribution parameters, computation of moments and other basic statistics, and an approximation of the distribution of the sum of several correlated lognormally distributed variables (Lo 2013 <doi:10.12988/ams.2013.39511>) and the approximation of the difference of two correlated lognormally distributed variables (Lo 2012 <doi:10.1155/2012/838397>).
Fits sex-specific life-history models for fish and other taxa where some of the individuals have unknown sex.
Wavelet-based methods for testing stationarity and quadtree segmenting of images, see Taylor et al (2014) <doi:10.1080/00401706.2013.823890>.
Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).
This package provides a toolbox for R arrays. Flexibly split, bind, reshape, modify, subset and name arrays.
Parse various reflectance/transmittance/absorbance spectra file formats to extract spectral data and metadata, as described in Gruson, White & Maia (2019) <doi:10.21105/joss.01857>. Among other formats, it can import files from Avantes <https://www.avantes.com/>, CRAIC <https://www.microspectra.com/>, and OceanOptics'/'OceanInsight <https://www.oceanoptics.com/> brands.
This package contains a set of functions to create data libraries, generate data dictionaries, and simulate a data step. The libname() function will load a directory of data into a library in one line of code. The dictionary() function will generate data dictionaries for individual data frames or an entire library. And the datestep() function will perform row-by-row data processing.
Calculates landscape metrics for categorical landscape patterns in a tidy workflow. landscapemetrics reimplements the most common metrics from FRAGSTATS (<https://www.fragstats.org/>) and new ones from the current literature on landscape metrics. This package supports terra SpatRaster objects as input arguments. It further provides utility functions to visualize patches, select metrics and building blocks to develop new metrics.