Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Modelling interacting microbial populations - example applications include human gut microbiota, rumen microbiota and phytoplankton. Solves a system of ordinary differential equations to simulate microbial growth and resource uptake over time. This version contains network visualisation functions.
The effects of the site may severely bias the accuracy of a multisite machine-learning model, even if the analysts removed them when fitting the model in the training set and applying the model in the test set (Solanes et al., Neuroimage 2023, 265:119800). This simple R package estimates the accuracy of a multisite machine-learning model unbiasedly, as described in (Solanes et al., Psychiatry Research: Neuroimaging 2021, 314:111313). It currently supports the estimation of sensitivity, specificity, balanced accuracy (for binary or multinomial variables), the area under the curve, correlation, mean squarer error, and hazard ratio for binomial, multinomial, gaussian, and survival (time-to-event) outcomes.
Grey model is commonly used in time series forecasting when statistical assumptions are violated with a limited number of data points. The minimum number of data points required to fit a grey model is four observations. This package fits Grey model of First order and One Variable, i.e., GM (1,1) for multivariate time series data and returns the parameters of the model, model evaluation criteria and h-step ahead forecast values for each of the time series variables. For method details see, Akay, D. and Atak, M. (2007) <DOI:10.1016/j.energy.2006.11.014>, Hsu, L. and Wang, C. (2007).<DOI:10.1016/j.techfore.2006.02.005>.
Given a set of data points, a clustering is defined as a disjoint partition where each pair of sets in a partition has no overlapping elements. This package provides 25 methods that play a role somewhat similar to distance or metric that measures similarity of two clusterings - or partitions. For a more detailed description, see Meila, M. (2005) <doi:10.1145/1102351.1102424>.
Biodiversity areas, especially primary forest, serve a multitude of functions for local economy, regional functionality of the ecosystems as well as the global health of our planet. Recently, adverse changes in human land use practices and climatic responses to increased greenhouse gas emissions, put these biodiversity areas under a variety of different threats. The present package helps to analyse a number of biodiversity indicators based on freely available geographical datasets. It supports computational efficient routines that allow the analysis of potentially global biodiversity portfolios. The primary use case of the package is to support evidence based reporting of an organization's effort to protect biodiversity areas under threat and to identify regions were intervention is most duly needed.
Framework for the Item Response Theory analysis of dichotomous and ordinal polytomous outcomes under the assumption of within-item multidimensionality and discreteness of the latent traits. The fitting algorithms allow for missing responses and for different item parametrizations and are based on the Expectation-Maximization paradigm. Individual covariates affecting the class weights may be included in the new version together with possibility of constraints on all model parameters.
This package provides functions of marginal mean and quantile regression models are used to analyze environmental exposure and biomonitoring data with repeated measurements and non-detects (i.e., values below the limit of detection (LOD)), as well as longitudinal exposure data that include non-detects and time-dependent covariates. For more details see Chen IC, Bertke SJ, Curwin BD (2021) <doi:10.1038/s41370-021-00345-1>, Chen IC, Bertke SJ, Estill CF (2024) <doi:10.1038/s41370-024-00640-7>, Chen IC, Bertke SJ, Dahm MM (2024) <doi:10.1093/annweh/wxae068>, and Chen IC (2025) <doi:10.1038/s41370-025-00752-8>.
Discrete event simulation using both R and C++ (Karlsson et al 2016; <doi:10.1109/eScience.2016.7870915>). The C++ code is adapted from the SSIM library <https://www.inf.usi.ch/carzaniga/ssim/>, allowing for event-oriented simulation. The code includes a SummaryReport class for reporting events and costs by age and other covariates. The C++ code is available as a static library for linking to other packages. A priority queue implementation is given in C++ together with an S3 closure and a reference class implementation. Finally, some tools are provided for cost-effectiveness analysis.
This package provides functions and wrappers for using the Multiple Aggregation Prediction Algorithm (MAPA) for time series forecasting. MAPA models and forecasts time series at multiple temporal aggregation levels, thus strengthening and attenuating the various time series components for better holistic estimation of its structure. For details see Kourentzes et al. (2014) <doi:10.1016/j.ijforecast.2013.09.006>.
Build CPMs (cumulative probability models, also known as cumulative link models) to account for detection limits (both single and multiple detection limits) in response variables. Conditional quantiles and conditional CDFs can be calculated based on fitted models. The package implements methods described in Tian, Y., Li, C., Tu, S., James, N. T., Harrell, F. E., & Shepherd, B. E. (2022). "Addressing Detection Limits with Semiparametric Cumulative Probability Models". <arXiv:2207.02815>.
Power analysis and sample size calculation for Welch and Hsu (Hedderich and Sachs (2018), ISBN:978-3-662-56657-2) t-tests including Monte-Carlo simulations of empirical power and type-I-error. Power and sample size calculation for Wilcoxon rank sum and signed rank tests via Monte-Carlo simulations. Power and sample size required for the evaluation of a diagnostic test(-system) (Flahault et al. (2005), <doi:10.1016/j.jclinepi.2004.12.009>; Dobbin and Simon (2007), <doi:10.1093/biostatistics/kxj036>) as well as for a single proportion (Fleiss et al. (2003), ISBN:978-0-471-52629-2; Piegorsch (2004), <doi:10.1016/j.csda.2003.10.002>; Thulin (2014), <doi:10.1214/14-ejs909>), comparing two negative binomial rates (Zhu and Lakkis (2014), <doi:10.1002/sim.5947>), ANCOVA (Shieh (2020), <doi:10.1007/s11336-019-09692-3>), reference ranges (Jennen-Steinmetz and Wellek (2005), <doi:10.1002/sim.2177>), multiple primary endpoints (Sozu et al. (2015), ISBN:978-3-319-22005-5), and AUC (Hanley and McNeil (1982), <doi:10.1148/radiology.143.1.7063747>).
This plot integrates annotation into a manhattan plot. The plot is implemented as a heatmap, which is binned using -log10(p-value) and chromosome position. Annotation currently supported is minor allele frequency and gene function high impact variants.
Learning and using the Metropolis algorithm for Bayesian fitting of a generalized linear model. The package vignette includes examples of hand-coding a logistic model using several variants of the Metropolis algorithm. The package also contains R functions for simulating posterior distributions of Bayesian generalized linear model parameters using guided, adaptive, guided-adaptive and random walk Metropolis algorithms. The random walk Metropolis algorithm was originally described in Metropolis et al (1953); <doi:10.1063/1.1699114>.
Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. MiscMetabar is mainly built on top of the phyloseq', dada2 and targets R packages. It helps to build reproducible and robust bioinformatics pipelines in R. MiscMetabar makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.
First- and higher-order likelihood inference in meta-analysis and meta-regression models.
This package provides probability mass, distribution, quantile, random variate generation, and method-of-moments parameter fitting for the MBBEFD family of distributions used in insurance modeling as described in Bernegger (1997) <doi:10.2143/AST.27.1.563208> without any external dependencies.
An implementation for multivariate functional additive mixed models (multiFAMM), see Volkmann et al. (2021, <arXiv:2103.06606>). It builds on developed methods for univariate sparse functional regression models and multivariate functional principal component analysis. This package contains the function to run a multiFAMM and some convenience functions useful when working with large models. An additional package on GitHub contains more convenience functions to reproduce the analyses of the corresponding paper (<https://github.com/alexvolkmann/multifammPaper>).
Generates derived parameter(s) from Monte Carlo Markov Chain (MCMC) samples using R code. This allows Bayesian models to be fitted without the inclusion of derived parameters which add unnecessary clutter and slow model fitting. For more information on MCMC samples see Brooks et al. (2011) <isbn:978-1-4200-7941-8>.
This package provides methods to construct multivariate grids, which can be used for multivariate quadrature. This grids can be based on different quadrature rules like Newton-Cotes formulas (trapezoidal-, Simpson's- rule, ...) or Gauss quadrature (Gauss-Hermite, Gauss-Legendre, ...). For the construction of the multidimensional grid the product-rule or the combination- technique can be applied.
This package provides a companion to the Chinese book ``Modern Statistical Graphics''.
Convenience functions for multivariate MCMC using univariate samplers including: slice sampler with stepout and shrinkage (Neal (2003) <DOI:10.1214/aos/1056562461>), adaptive rejection sampler (Gilks and Wild (1992) <DOI:10.2307/2347565>), adaptive rejection Metropolis (Gilks et al (1995) <DOI:10.2307/2986138>), and univariate Metropolis with Gaussian proposal.
Multivariate version of the two-sample Gehan and logrank tests, as described in L.J Wei & J.M Lachin (1984) and Persson et al. (2019).
Frequently one needs a convenient way to build and tune several models in one go.The goal is to provide a number of machine learning convenience functions. It provides the ability to build, tune and obtain predictions of several models in one function. The models are built using functions from caret with easier to read syntax. Kuhn(2014) <doi:10.48550/arXiv.1405.6974>.
This package provides a function for measuring the difference between two independent or non-independent empirical distributions and returning a significance level of the difference.