Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for model-based clustering of multinomial counts under the presence of covariates using mixtures of multinomial logit models, as implemented in Papastamoulis (2023) <DOI:10.1007/s11634-023-00547-5>. These models are estimated under a frequentist as well as a Bayesian setup using the Expectation-Maximization algorithm and Markov chain Monte Carlo sampling (MCMC), respectively. The (unknown) number of clusters is selected according to the Integrated Completed Likelihood criterion (for the frequentist model), and estimating the number of non-empty components using overfitting mixture models after imposing suitable sparse prior assumptions on the mixing proportions (in the Bayesian case), see Rousseau and Mengersen (2011) <DOI:10.1111/j.1467-9868.2011.00781.x>. In the latter case, various MCMC chains run in parallel and are allowed to switch states. The final MCMC output is suitably post-processed in order to undo label switching using the Equivalence Classes Representatives (ECR) algorithm, as described in Papastamoulis (2016) <DOI:10.18637/jss.v069.c01>.
Visualizes multiple sequence alignments dynamically within the Shiny web application framework.
The need for anonymization of individual survey responses often leads to many suppressed grid cells in a regular grid. Here we provide functionality for creating multi-resolution gridded data, respecting the confidentiality rules, such as a minimum number of units and dominance by one or more units for each grid cell. The functions also include the possibility for contextual suppression of data. For more details see Skoien et al. (2025) <doi:10.48550/arXiv.2410.17601>.
Computes martingale difference correlation (MDC), martingale difference divergence, and their partial extensions to assess conditional mean dependence. The methods are based on Shao and Zhang (2014) <doi:10.1080/01621459.2014.887012>. Additionally, introduces a novel hypothesis test for evaluating covariate effects on the cure rate in mixture cure models, using MDC-based statistics. The methodology is described in Monroy-Castillo et al. (2025, manuscript submitted).
Utility functions for mutational signature analysis as described in Alexandrov, L. B. (2020) <doi:10.1038/s41586-020-1943-3>. This package provides two groups of functions. One is for dealing with mutational signature "exposures" (i.e. the counts of mutations in a sample that are due to each mutational signature). The other group of functions is for matching or comparing sets of mutational signatures. mSigTools stands for mutational Signature analysis Tools.
The main functions perform mixed models analysis by least squares or REML by adding the function r() to formulas of lm() and glm(). A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm(), glm() and associated summaries from the package stats'.
Mapping Averaged Pairwise Information (MAPI) is an exploratory method providing graphical representations summarizing the spatial variation of pairwise metrics (eg. distance, similarity coefficient, ...) computed between georeferenced samples.
Uses recursive partitioning to create homogeneous subgroups based on structural equation models fit in Mplus', a stand-alone program developed by Muthen and Muthen.
Data sets related to the Islas Malvinas /// Sets de datos relacionados a las Islas Malvinas - La Nación Argentina ratifica su legà tima e imprescriptible soberanà a sobre las islas Malvinas, Georgias del Sur y Sándwich del Sur y los espacios marà timos e insulares correspondientes, por ser parte integrante del territorio nacional. La recuperación de dichos territorios y el ejercicio pleno de la soberanà a, respetando el modo de vida de sus habitantes y conforme a los principios del Derecho Internacional, constituyen un objetivo permanente e irrenunciable del pueblo argentino.
Procedures to simulate, estimate and diagnose MGARCH processes of BEKK and multivariate GJR (bivariate asymmetric GARCH model) specification.
An implementation of a taxonomy of models of restricted diffusion in biological tissues parametrized by the tissue geometry (axis, diameter, density, etc.). This is primarily used in the context of diffusion magnetic resonance (MR) imaging to model the MR signal attenuation in the presence of diffusion gradients. The goal is to provide tools to simulate the MR signal attenuation predicted by these models under different experimental conditions. The package feeds a companion shiny app available at <https://midi-pastrami.apps.math.cnrs.fr> that serves as a graphical interface to the models and tools provided by the package. Models currently available are the ones in Neuman (1974) <doi:10.1063/1.1680931>, Van Gelderen et al. (1994) <doi:10.1006/jmrb.1994.1038>, Stanisz et al. (1997) <doi:10.1002/mrm.1910370115>, Soderman & Jonsson (1995) <doi:10.1006/jmra.1995.0014> and Callaghan (1995) <doi:10.1006/jmra.1995.1055>.
Computes Monte Carlo standard errors for summaries of Monte Carlo output. Summaries and their standard errors are based on columns of Monte Carlo simulation output. Dennis D. Boos and Jason A. Osborne (2015) <doi:10.1111/insr.12087>.
This package provides functions for detecting multicollinearity. This test gives statistical support to two of the most famous methods for detecting multicollinearity in applied work: Kleinâ s rule and Variance Inflation Factor (VIF). See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2015) <doi:10.33333/rp.vol51n2.05>.
This package implements order selection for Vector Autoregressive (VAR) models using the Mean Square Information Criterion (MIC). Unlike standard methods such as AIC and BIC, MIC is likelihood-free. This method consistently estimates VAR order and has robust performance under model misspecification. For more details, see Hellstern and Shojaie (2025) <doi:10.48550/arXiv.2511.19761>.
In the case of multivariate ordinal responses, parameter estimates can be severely biased if personal response styles are ignored. This packages provides methods to account for personal response styles and to explain the effects of covariates on the response style, as proposed by Schauberger and Tutz 2021 <doi:10.1177/1471082X20978034>. The method is implemented both for the multivariate cumulative model and the multivariate adjacent categories model.
Implementation of two p-value combination techniques (inverse normal and Fisher methods). A vignette is provided to explain how to perform a meta-analysis from two independent RNA-seq experiments.
This package implements the generalization of the Shapiro-Wilk test for multivariate normality proposed by Villasenor-Alva and Gonzalez-Estrada (2009).
The number of biological databases is growing rapidly, but different databases use different IDs to refer to the same biological entity. The inconsistency in IDs impedes the integration of various types of biological data. To resolve the problem, we developed MantaID', a data-driven, machine-learning based approach that automates identifying IDs on a large scale. The MantaID model's prediction accuracy was proven to be 99%, and it correctly and effectively predicted 100,000 ID entries within two minutes. MantaID supports the discovery and exploitation of ID patterns from large quantities of databases. (e.g., up to 542 biological databases). An easy-to-use freely available open-source software R package, a user-friendly web application, and API were also developed for MantaID to improve applicability. To our knowledge, MantaID is the first tool that enables an automatic, quick, accurate, and comprehensive identification of large quantities of IDs, and can therefore be used as a starting point to facilitate the complex assimilation and aggregation of biological data across diverse databases.
An R interface to version 0.3 of the ROPTLIB optimization library (see <https://www.math.fsu.edu/~whuang2/> for more information). Optimize real- valued functions over manifolds such as Stiefel, Grassmann, and Symmetric Positive Definite matrices. For details see Martin et. al. (2020) <doi:10.18637/jss.v093.i01>. Note that the optional ldr package used in some of this package's examples can be obtained from either JSS <https://www.jstatsoft.org/index.php/jss/article/view/v061i03/2886> or from the CRAN archives <https://cran.r-project.org/src/contrib/Archive/ldr/ldr_1.3.3.tar.gz>.
Implementation of Multidimensional Top Scoring method for creativity assessment proposed in Boris Forthmann, Maciej Karwowski, Roger E. Beaty (2023) <doi:10.1037/aca0000571>.
Calculate Krippendorff's alpha for multi-valued data using the methods introduced by Krippendorff and Craggs (2016) <doi:10.1080/19312458.2016.1228863>. Nominal, ordinal, interval, and ratio data types are supported, with options to create bootstrapped estimates of alpha and/or parallelize calculations.
Automatically estimate 11 effect size measures from a well-formatted dataset. Various other functions can help, for example, removing dependency between several effect sizes, or identifying differences between two datasets. This package is mainly designed to assist in conducting a systematic review with a meta-analysis but can be useful to any researcher interested in estimating an effect size.
Requires rooted phylogeny as input and creates a table of genera, their monophyly-status, which taxa cause problems in monophyly etc. Different information can be extracted from the output and a plot function allows visualization of the results in a number of ways. "MonoPhy: a simple R package to find and visualize monophyly issues." Schwery, O. & O'Meara, B.C. (2016) <doi:10.7717/peerj-cs.56>.
Most of this package consists of data sets from the textbook Introduction to Linear Regression Analysis (3rd ed), by Montgomery, Peck and Vining. Some additional data sets and functions are also included.