Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simultaneous clustering of rows and columns, usually designated by biclustering, co-clustering or block clustering, is an important technique in two way data analysis. It consists of estimating a mixture model which takes into account the block clustering problem on both the individual and variables sets. The blockcluster package provides a bridge between the C++ core library build on top of the STK++ library, and the R statistical computing environment. This package allows to co-cluster binary <doi:10.1016/j.csda.2007.09.007>, contingency <doi:10.1080/03610920903140197>, continuous <doi:10.1007/s11634-013-0161-3> and categorical data-sets <doi:10.1007/s11222-014-9472-2>. It also provides utility functions to visualize the results. This package may be useful for various applications in fields of Data mining, Information retrieval, Biology, computer vision and many more. More information about the project and comprehensive tutorial can be found on the link mentioned in URL.
Developed for the following tasks. 1- Simulating and computing the maximum likelihood estimator for the Birnbaum-Saunders (BS) distribution, 2- Computing the Bayesian estimator for the parameters of the BS distribution based on reference prior proposed by Xu and Tang (2010) <doi:10.1016/j.csda.2009.08.004> and conjugate prior. 3- Computing the Bayesian estimator for the BS distribution based on conjugate prior. 4- Computing the Bayesian estimator for the BS distribution based on Jeffrey prior given by Achcar (1993) <doi:10.1016/0167-9473(93)90170-X> 5- Computing the Bayesian estimator for the BS distribution under progressive type-II censoring scheme.
Fit semiparametric bivariate correlated frailty models.
This package provides a collection of Bayesian networks (discrete, Gaussian, and conditional linear Gaussian) collated from recent academic literature. The bnRep_summary object provides an overview of the Bayesian networks in the repository and the package documentation includes details about the variables in each network. A Shiny app to explore the repository can be launched with bnRep_app() and is available online at <https://manueleleonelli.shinyapps.io/bnRep>. Reference: M. Leonelli (2025) <doi:10.1016/j.neucom.2025.129502>.
This is an implementation of BART:Bayesian Additive Regression Trees, by Chipman, George, McCulloch (2010).
This package provides tools to generate unique identifier codes and printable barcoded labels for the management of biological samples. The creation of unique ID codes and printable PDF files can be initiated by standard commands, user prompts, or through a GUI addin for R Studio. Biologically informative codes can be included for hierarchically structured sampling designs.
Bayesian inferences on nonparametric regression via Gaussian Processes with a modified exponential square kernel using a basis expansion approach.
Calculates a range of UK freshwater invertebrate biotic indices including BMWP, Whalley, WHPT, Habitat-specific BMWP, AWIC, LIFE and PSI.
Bayesian kernel machine regression (from the bkmr package) is a Bayesian semi-parametric generalized linear model approach under identity and probit links. There are a number of functions in this package that extend Bayesian kernel machine regression fits to allow multiple-chain inference and diagnostics, which leverage functions from the future', rstan', and coda packages. Reference: Bobb, J. F., Henn, B. C., Valeri, L., & Coull, B. A. (2018). Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. ; <doi:10.1186/s12940-018-0413-y>.
This package implements two algorithms of detecting Bull and Bear markets in stock prices: the algorithm of Pagan and Sossounov (2002, <doi:10.1002/jae.664>) and the algorithm of Lunde and Timmermann (2004, <doi:10.1198/073500104000000136>). The package also contains functions for printing out the dating of the Bull and Bear states of the market, the descriptive statistics of the states, and functions for plotting the results. For the sake of convenience, the package includes the monthly and daily data on the prices (not adjusted for dividends) of the S&P 500 stock market index.
Run other estimation and simulation software via the nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>) interface including PKNCA', NONMEM and Monolix'. While not required, you can get/install the lixoftConnectors package in the Monolix installation, as described at the following url <https://monolixsuite.slp-software.com/r-functions/2024R1/installation-and-initialization>. When lixoftConnectors is available, Monolix can be run directly instead of setting up command line usage.
It makes the creation of networks from sequences of RNA, with this is done the abstraction of characteristics of these networks with a methodology of maximum entropy for the purpose of making a classification between the classes of the sequences. There are two data present in the BASiNET package, "mRNA", and "ncRNA" with 10 sequences. These sequences were taken from the data set used in the article (LI, Aimin; ZHANG, Junying; ZHOU, Zhongyin, 2014) <doi:10.1186/1471-2105-15-311>, these sequences are used to run examples.
The BACCO bundle of packages is replaced by the BACCO package, which provides a vignette that illustrates the constituent packages (emulator, approximator, calibrator) in use.
The function \codebarcode() produces a histogram-like plot of a distribution that shows granularity in the data.
Carries out Bland Altman analyses (also known as a Tukey mean-difference plot) as described by JM Bland and DG Altman in 1986 <doi:10.1016/S0140-6736(86)90837-8>. This package was created in 2015 as existing Bland-Altman analysis functions did not calculate confidence intervals. This package was created to rectify this, and create reproducible plots. This package is also available as a module for the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information).
It is designed to calculate connection between (among) brain regions and plot connection lines. Also, the summary function is included to summarize group-level connectivity network. Kang, Jian (2016) <doi:10.1016/j.neuroimage.2016.06.042>.
This package implements the distance measure for mixed-scale variables proposed by Buttler and Fickel (1995), based on normalized mean pairwise distances (Gini mean difference), and an R2 statistic to assess clustering quality.
An aid for manipulating data associated with biomonitoring and bioassessment. Calculations include metric calculation, marking of excluded taxa, subsampling, and multimetric index calculation. Targeted communities are benthic macroinvertebrates, fish, periphyton, and coral. As described in the Revised Rapid Bioassessment Protocols (Barbour et al. 1999) <https://archive.epa.gov/water/archive/web/html/index-14.html>.
Bayesian variable selection methods for analyzing the structure of a Markov random field model for a network of binary and/or ordinal variables.
This package provides a GUI with which the user can construct and interact with Bootstrap methods on Classical Biplots and with Clustering and/or Disjoint Biplot. This GUI is also aimed for estimate any numerical data matrix using the Clustering and Disjoint Principal component (CDPCA) methodology.
Collection of tools to work with European basketball data. Functions available are related to friendly web scraping, data management and visualization. Data were obtained from <https://www.euroleaguebasketball.net/euroleague/>, <https://www.euroleaguebasketball.net/eurocup/> and <https://www.acb.com/>, following the instructions of their respectives robots.txt files, when available. Box score data are available for the three leagues. Play-by-play and spatial shooting data are also available for the Spanish league. Methods for analysis include a population pyramid, 2D plots, circular plots of players percentiles, plots of players monthly/yearly stats, team heatmaps, team shooting plots, team four factors plots, cross-tables with the results of regular season games, maps of nationalities, combinations of lineups, possessions-related variables, timeouts, performance by periods, personal fouls, offensive rebounds and different types of shooting charts. Please see Vinue (2020) <doi:10.1089/big.2018.0124> and Vinue (2024) <doi:10.1089/big.2023.0177>.
Stan-based curve-fitting function for use with package breathtestcore by the same author. Stan functions are refactored here for easier testing.
Simulation of bivariate uniform data with a full range of correlations based on two beta densities and computation of the tetrachoric correlation (correlation of bivariate uniform data) from the phi coefficient (correlation of bivariate binary data) and vice versa.
Use BirdNET', a state-of-the-art deep learning classifier, to automatically identify (bird) sounds. Analyze bioacoustic datasets without any computer science background using a pre-trained model or a custom trained classifier. Predict bird species occurrence based on location and week of the year. Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021) <doi:10.1016/j.ecoinf.2021.101236>.