Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The multispatial convergent cross mapping algorithm can be used as a test for causal associations between pairs of processes represented by time series. This is a combination of convergent cross mapping (CCM), described in Sugihara et al., 2012, Science, 338, 496-500, and dew-drop regression, described in Hsieh et al., 2008, American Naturalist, 171, 71â 80. The algorithm allows CCM to be implemented on data that are not from a single long time series. Instead, data can come from many short time series, which are stitched together using bootstrapping.
This package provides an interface to the Mapbox GL JS (<https://docs.mapbox.com/mapbox-gl-js/guides>) and the MapLibre GL JS (<https://maplibre.org/maplibre-gl-js/docs/>) interactive mapping libraries to help users create custom interactive maps in R. Users can create interactive globe visualizations; layer sf objects to create filled maps, circle maps, heatmaps', and three-dimensional graphics; and customize map styles and views. The package also includes utilities to use Mapbox and MapLibre maps in Shiny web applications.
This package provides a comprehensive graphical user interface for analysis of Affymetrix, Agilent, Illumina, Nimblegen and other microarray data. It can perform miscellaneous tasks such as gene set enrichment and test analyses, identifying gene symbols and building co-expression network. It can also estimate sample size for atleast two-fold expression change. The current version is its slenderized form for compatable and flexible implementation.
Toolbox and shiny application to help researchers design movement ecology studies, focusing on two key objectives: estimating home range areas, and estimating fine-scale movement behavior, specifically speed and distance traveled. It provides interactive simulations and methodological guidance to support study planning and decision-making. The application is described in Silva et al. (2023) <doi:10.1111/2041-210X.14153>.
Performing multiple-class cluster correspondence analysis(MCCCA). The main functions are create.MCCCAdata() to create a list to be applied to MCCCA, MCCCA() to apply MCCCA, and plot.mccca() for visualizing MCCCA result. Methods used in the package refers to Mariko Takagishi and Michel van de Velden (2022)<doi:10.1080/10618600.2022.2035737>.
Model based clustering using the multivariate multiple Scaled t (MST) and multivariate multiple scaled contaminated normal (MSCN) distributions. The MST is an extension of the multivariate Student-t distribution to include flexible tail behaviors, Forbes, F. & Wraith, D. (2014) <doi:10.1007/s11222-013-9414-4>. The MSCN represents a heavy-tailed generalization of the multivariate normal (MN) distribution to model elliptical contoured scatters in the presence of mild outliers (also referred to as "bad" points) and automatically detect bad points, Punzo, A. & Tortora, C. (2021) <doi:10.1177/1471082X19890935>.
This package provides classes and calculation and plotting functions for metrology applications, including measurement uncertainty estimation and inter-laboratory metrology comparison studies.
This package implements an estimator for relative risk based on the median unbiased estimator. The relative risk estimator is well defined and performs satisfactorily for a wide range of data configurations. The details of the method are available in Carter et al (2010) <doi:10.1111/j.1467-9876.2010.00711.x>.
This package provides tools for systematic comparison of data frames, offering functionality to identify, quantify, and extract differences. Provides functions with user-friendly and interactive console output for immediate analysis, while also offering options to export differences as structured data frames that can be easily integrated into existing workflows.
Helps calculate statistical values commonly used in meta-analysis. It provides several methods to compute different forms of standardized mean differences, as well as other values such as standard errors and standard deviations. The methods used in this package are described in the following references: Altman D G, Bland J M. (2011) <doi:10.1136/bmj.d2090> Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. (2009) <doi:10.1002/9780470743386.ch4> Chinn S. (2000) <doi:10.1002/1097-0258(20001130)19:22%3C3127::aid-sim784%3E3.0.co;2-m> Cochrane Handbook (2011) <https://handbook-5-1.cochrane.org/front_page.htm> Cooper, H., Hedges, L. V., & Valentine, J. C. (2009) <https://psycnet.apa.org/record/2009-05060-000> Cohen, J. (1977) <https://psycnet.apa.org/record/1987-98267-000> Ellis, P.D. (2009) <https://www.psychometrica.de/effect_size.html> Goulet-Pelletier, J.-C., & Cousineau, D. (2018) <doi:10.20982/tqmp.14.4.p242> Hedges, L. V. (1981) <doi:10.2307/1164588> Hedges L. V., Olkin I. (1985) <doi:10.1016/C2009-0-03396-0> Murad M H, Wang Z, Zhu Y, Saadi S, Chu H, Lin L et al. (2023) <doi:10.1136/bmj-2022-073141> Mayer M (2023) <https://search.r-project.org/CRAN/refmans/confintr/html/ci_proportion.html> Stackoverflow (2014) <https://stats.stackexchange.com/questions/82720/confidence-interval-around-binomial-estimate-of-0-or-1> Stackoverflow (2018) <https://stats.stackexchange.com/q/338043>.
Parametric modeling of M-quantile regression coefficient functions.
Implementation of a framework for cluster analysis with selection of the final number of clusters and an optional variable selection procedure. The package is designed to integrate the results of multiple imputed datasets while accounting for the uncertainty that the imputations introduce in the final results. In addition, the package can also be used for a cluster analysis of the complete cases of a single dataset. The package also includes specific methods to summarize and plot the results. The methods are described in Basagana et al. (2013) <doi:10.1093/aje/kws289>.
This package provides methods for analyzing DNA methylation data via Most Recurrent Methylation Patterns (MRMPs). Supports cell-type annotation, spatial deconvolution, unsupervised clustering, and cancer cell-of-origin inference. Includes C-backed summaries for YAME â .cg/.cmâ files (overlap counts, log2 odds ratios, beta/depth aggregation), an XGBoost classifier, NNLS deconvolution, and plotting utilities. Scales to large spatial and single-cell methylomes and is robust to extreme sparsity.
This package provides tools for econometric analysis and economic modelling with the traditional two-input Constant Elasticity of Substitution (CES) function and with nested CES functions with three and four inputs. The econometric estimation can be done by the Kmenta approximation, or non-linear least-squares using various gradient-based or global optimisation algorithms. Some of these algorithms can constrain the parameters to certain ranges, e.g. economically meaningful values. Furthermore, the non-linear least-squares estimation can be combined with a grid-search for the rho-parameter(s). The estimation methods are described in Henningsen et al. (2021) <doi:10.4337/9781788976480.00030>.
This package provides functions to read in and manipulate air quality model output from Models3-formatted files. This format is used by the Community Multiscale Air Quality (CMAQ) model.
Generates efficient balanced mixed-level k-circulant supersaturated designs by interchanging the elements of the generator vector. Attempts to generate a supersaturated design that has EfNOD efficiency more than user specified efficiency level (mef). Displays the progress of generation of an efficient mixed-level k-circulant design through a progress bar. The progress of 100 per cent means that one full round of interchange is completed. More than one full round (typically 4-5 rounds) of interchange may be required for larger designs. For more details, please see Mandal, B.N., Gupta V. K. and Parsad, R. (2011). Construction of Efficient Mixed-Level k-Circulant Supersaturated Designs, Journal of Statistical Theory and Practice, 5:4, 627-648, <doi:10.1080/15598608.2011.10483735>.
Process OpenPose human body keypoints for computer vision, including data structuring and user-defined linear transformations for standardization. It optionally, includes metadata extraction from filenames in the UCLA NewsScape archive.
The chi-squared test for goodness of fit and independence test.
The method m:Explorer associates a given list of target genes (e.g. those involved in a biological process) to gene regulators such as transcription factors. Transcription factors that bind DNA near significantly many target genes or correlate with target genes in transcriptional (microarray or RNAseq data) are selected. Selection of candidate master regulators is carried out using multinomial regression models, likelihood ratio tests and multiple testing correction. Reference: m:Explorer: multinomial regression models reveal positive and negative regulators of longevity in yeast quiescence. Juri Reimand, Anu Aun, Jaak Vilo, Juan M Vaquerizas, Juhan Sedman and Nicholas M Luscombe. Genome Biology (2012) 13:R55 <doi:10.1186/gb-2012-13-6-r55>.
Package for estimating, analyzing, and forecasting multi-country macro-finance affine term structure models (ATSMs). All setups build on the single-country unspanned macroeconomic risk framework from Joslin, Priebsch, and Singleton (2014, JF) <doi:10.1111/jofi.12131>. Multicountry extensions by Jotikasthira, Le, and Lundblad (2015, JFE) <doi:10.1016/j.jfineco.2014.09.004>, Candelon and Moura (2023, EM) <doi:10.1016/j.econmod.2023.106453>, and Candelon and Moura (2024, JFEC) <doi:10.1093/jjfinec/nbae008> are also available. The package also provides tools for bias correction as in Bauer Rudebusch and Wu (2012, JBES) <doi:10.1080/07350015.2012.693855>, bootstrap analysis, and several graphical/numerical outputs.
Likelihood-based estimation of conditional transformation models via the most likely transformation approach described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291> and Hothorn (2020) <DOI:10.18637/jss.v092.i01>. Shift-scale (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>) and multivariate (Klein et al, 2022, <DOI:10.1111/sjos.12501>) transformation models are part of this package. A package vignette is available from <DOI:10.32614/CRAN.package.mlt.docreg> and more convenient user interfaces to many models from <DOI:10.32614/CRAN.package.tram>.
Simulating and estimating (regime-switching) Markov chain Gaussian fields with covariance functions of the Gneiting class (Gneiting 2002) <doi:10.1198/016214502760047113>. It supports parameter estimation by weighted least squares and maximum likelihood methods, and produces Kriging forecasts and intervals for existing and new locations.
Fits Semiparametric Promotion Time Cure Models, taking into account (using a corrected score approach or the SIMEX algorithm) or not the measurement error in the covariates, using a backfitting approach to maximize the likelihood.
Toolset that enriches mlr with a diverse set of preprocessing operators. Composable Preprocessing Operators ("CPO"s) are first-class R objects that can be applied to data.frames and mlr "Task"s to modify data, can be attached to mlr "Learner"s to add preprocessing to machine learning algorithms, and can be composed to form preprocessing pipelines.