Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to estimate start and duration of moult from moult data, based on models developed in Underhill and Zucchini (1988, 1990).
Implementations of MOSUM-based statistical procedures and algorithms for detecting multiple changes in the mean. This comprises the MOSUM procedure for estimating multiple mean changes from Eichinger and Kirch (2018) <doi:10.3150/16-BEJ887> and the multiscale algorithmic extension from Cho and Kirch (2022) <doi:10.1007/s10463-021-00811-5>, as well as the bootstrap procedure for generating confidence intervals about the locations of change points as proposed in Cho and Kirch (2022) <doi:10.1016/j.csda.2022.107552>. See also Meier, Kirch and Cho (2021) <doi:10.18637/jss.v097.i08> which accompanies the R package.
Estimates Variable Length Markov Chains (VLMC) models and VLMC with covariates models from discrete sequences. Supports model selection via information criteria and simulation of new sequences from an estimated model. See Bühlmann, P. and Wyner, A. J. (1999) <doi:10.1214/aos/1018031204> for VLMC and Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022) <doi:10.1111/jtsa.12615> for VLMC with covariates.
This package provides singular value decomposition based estimation algorithms for exploratory item factor analysis (IFA) based on multidimensional item response theory models. For more information, please refer to: Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15, <DOI:10.1007/s11336-020-09704-7>.
Overcomes one of the major challenges in mobile (passive) sensing, namely being able to pre-process the raw data that comes from a mobile sensing app, specifically m-Path Sense <https://m-path.io>. The main task of mpathsenser is therefore to read m-Path Sense JSON files into a database and provide several convenience functions to aid in data processing.
This package provides a nature-inspired metaheuristic algorithm based on the echolocation behavior of microbats that uses frequency tuning to optimize problems in both continuous and discrete dimensions. This R package makes it easy to implement the standard bat algorithm on any user-supplied function. The algorithm was first developed by Xin-She Yang in 2010 (<DOI:10.1007/978-3-642-12538-6_6>, <DOI:10.1109/CINTI.2014.7028669>).
Tabulate and plot directional and other multivariate histograms.
This package provides a general framework for clinical trial simulations based on the Clinical Scenario Evaluation (CSE) approach. The package supports a broad class of data models (including clinical trials with continuous, binary, survival-type and count-type endpoints as well as multivariate outcomes that are based on combinations of different endpoints), analysis strategies and commonly used evaluation criteria.
Maximum likelihood estimates (MLE) of the proportions of 5-mC and 5-hmC in the DNA using information from BS-conversion, TAB-conversion, and oxBS-conversion methods. One can use information from all three methods or any combination of two of them. Estimates are based on Binomial model by Qu et al. (2013) <doi:10.1093/bioinformatics/btt459> and Kiihl et al. (2019) <doi:10.1515/sagmb-2018-0031>.
Measure of the Effect ('MOTE') is an effect size calculator, including a wide variety of effect sizes in the mean differences family (all versions of d) and the variance overlap family (eta, omega, epsilon, r). MOTE provides non-central confidence intervals for each effect size, relevant test statistics, and output for reporting in APA Style (American Psychological Association, 2010, <ISBN:1433805618>) with LaTeX'. In research, an over-reliance on p-values may conceal the fact that a study is under-powered (Halsey, Curran-Everett, Vowler, & Drummond, 2015 <doi:10.1038/nmeth.3288>). A test may be statistically significant, yet practically inconsequential (Fritz, Scherndl, & Kühberger, 2012 <doi:10.1177/0959354312436870>). Although the American Psychological Association has long advocated for the inclusion of effect sizes (Wilkinson & American Psychological Association Task Force on Statistical Inference, 1999 <doi:10.1037/0003-066X.54.8.594>), the vast majority of peer-reviewed, published academic studies stop short of reporting effect sizes and confidence intervals (Cumming, 2013, <doi:10.1177/0956797613504966>). MOTE simplifies the use and interpretation of effect sizes and confidence intervals.
Estimation, inference and diagnostics for Univariate Autoregressive Markov Switching Models for Linear and Generalized Models. Distributions for the series include gaussian, Poisson, binomial and gamma cases. The EM algorithm is used for estimation (see Perlin (2012) <doi:10.2139/ssrn.1714016>).
The utility of this package is in simulating mixtures of Gaussian distributions with different levels of overlap between mixture components. Pairwise overlap, defined as a sum of two misclassification probabilities, measures the degree of interaction between components and can be readily employed to control the clustering complexity of datasets simulated from mixtures. These datasets can then be used for systematic performance investigation of clustering and finite mixture modeling algorithms. Among other capabilities of MixSim', there are computing the exact overlap for Gaussian mixtures, simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calculating various measures of agreement between two partitionings, and constructing parallel distribution plots for the graphical display of finite mixture models.
Selecting the optimal multidimensional scaling (MDS) procedure for metric data via metric MDS (ratio, interval, mspline) and nonmetric MDS (ordinal). Selecting the optimal multidimensional scaling (MDS) procedure for interval-valued data via metric MDS (ratio, interval, mspline).Selecting the optimal multidimensional scaling procedure for interval-valued data by varying all combinations of normalization and optimization methods.Selecting the optimal MDS procedure for statistical data referring to the evaluation of tourist attractiveness of Lower Silesian counties. (Borg, I., Groenen, P.J.F., Mair, P. (2013) <doi:10.1007/978-3-642-31848-1>, Walesiak, M. (2016) <doi:10.15611/ekt.2016.2.01>, Walesiak, M. (2017) <doi:10.15611/ekt.2017.3.01>).
This package provides a simple informative powerful test (mvnTest()) for multivariate normality proposed by Zhou and Shao (2014) <doi:10.1080/02664763.2013.839637>, which combines kurtosis with Shapiro-Wilk test that is easy for biomedical researchers to understand and easy to implement in all dimensions. This package also contains some other multivariate normality tests including Fattorini's FA test (faTest()), Mardia's skewness and kurtosis test (mardia()), Henze-Zirkler's test (mhz()), Bowman and Shenton's test (msk()), Roystonâ s H test (msw()), and Villasenor-Alva and Gonzalez-Estrada's test (msw()). Empirical power calculation functions for these tests are also provided. In addition, this package includes some functions to generate several types of multivariate distributions mentioned in Zhou and Shao (2014).
Persistent interface to Macaulay2 <https://www.macaulay2.com> and front-end tools facilitating its use in the R ecosystem. For details see Kahle et. al. (2020) <doi:10.18637/jss.v093.i09>.
Applying the methodology from Manuel et al. to estimate parameters using a matched case control data with a mismeasured exposure variable that is accompanied by instrumental variables (Submitted).
Convenience functions for multivariate MCMC using univariate samplers including: slice sampler with stepout and shrinkage (Neal (2003) <DOI:10.1214/aos/1056562461>), adaptive rejection sampler (Gilks and Wild (1992) <DOI:10.2307/2347565>), adaptive rejection Metropolis (Gilks et al (1995) <DOI:10.2307/2986138>), and univariate Metropolis with Gaussian proposal.
Simultaneously estimates sparse regression coefficients and response network structure in multivariate models with missing data. Unlike traditional approaches requiring imputation, handles missingness natively through unbiased estimating equations (MCAR/MAR compatible). Employs dual L1 regularization with automated selection via cross-validation or information criteria. Includes parallel computation, warm starts, adaptive grids, publication-ready visualizations, and prediction methods. Ideal for genomics, neuroimaging, and multi-trait studies with incomplete high-dimensional outcomes. See Zeng et al. (2025) <doi:10.48550/arXiv.2507.05990>.
This package provides an extension to the lolog package by introducing the minTriadicClosure() statistic to capture higher-order interactions among triplets of nodes. This function facilitates improved modelling of group formations and triadic closure in networks. A smoothing parameter has been incorporated to avoid numerical errors.
This package provides a basic interface for accessing annotation data from the Multi-CAST collection, a database of spoken natural language texts edited by Geoffrey Haig and Stefan Schnell. The collection draws from a diverse set of languages and has been annotated across multiple levels. Annotation data is downloaded on request from the servers of the University of Bamberg. See the Multi-CAST website <https://multicast.aspra.uni-bamberg.de/> for more information and a list of related publications.
Defines the classes used to explore, cluster and visualize distance matrices, especially those arising from binary data. See Abrams and colleagues, 2021, <doi:10.1093/bioinformatics/btab037>.
Implementing various things including functions for LaTeX tables, the Kalman filter, QQ-plots with simulation-based confidence intervals, linear regression diagnostics, web scraping, development tools, relative risk and odds rati, GARCH(1,1) Forecasting.
Computes Control limits, coefficients of control limits, various performance metrics and depicts control charts for monitoring Maxwell-distributed quality characteristics.
Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.