Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions are provided for calculating efficiency using multiplier DEA (Data Envelopment Analysis): Measuring the efficiency of decision making units (Charnes et al., 1978 <doi:10.1016/0377-2217(78)90138-8>) and cross efficiency using single and two-phase approach. In addition, it includes some datasets for calculating efficiency and cross efficiency.
Visualize confounder control in meta-analysis. metaconfoundr is an approach to evaluating bias in studies used in meta-analyses based on the causal inference framework. Study groups create a causal diagram displaying their assumptions about the scientific question. From this, they develop a list of important confounders'. Then, they evaluate whether studies controlled for these variables well. metaconfoundr is a toolkit to facilitate this process and visualize the results as heat maps, traffic light plots, and more.
This package implements differential methylation region (DMR) detection using a multistage Markov chain Monte Carlo (MCMC) algorithm based on the alpha-skew generalized normal (ASGN) distribution. Version 0.2.0 removes the Anderson-Darling test stage, improves computational efficiency of the core ASGN and multistage MCMC routines, and adds convenience functions for summarizing and visualizing detected DMRs. The methodology is based on Yang (2025) <https://www.proquest.com/docview/3218878972>.
Likelihood-based estimation of conditional transformation models via the most likely transformation approach described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291> and Hothorn (2020) <DOI:10.18637/jss.v092.i01>. Shift-scale (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>) and multivariate (Klein et al, 2022, <DOI:10.1111/sjos.12501>) transformation models are part of this package. A package vignette is available from <DOI:10.32614/CRAN.package.mlt.docreg> and more convenient user interfaces to many models from <DOI:10.32614/CRAN.package.tram>.
This package provides a single function plotting Marradi's trees: a graphical representation of a numerical variable for comparing the variable mean and standard deviation across subgroups. See A. Marradi "L'analisi monovariata" (1993, ISBN: 9788820496876).
An R interface for the Java Machine Learning for Language Toolkit (mallet) <http://mallet.cs.umass.edu/> to estimate probabilistic topic models, such as Latent Dirichlet Allocation. We can use the R package to read textual data into mallet from R objects, run the Java implementation of mallet directly in R, and extract results as R objects. The Mallet toolkit has many functions, this wrapper focuses on the topic modeling sub-package written by David Mimno. The package uses the rJava package to connect to a JVM.
MatLab'-Style Modeling of Optimization Problems with R'. This package provides a set of convenience functions to transform a MatLab'-style optimization modeling structure to its ROI equivalent.
Estimate Multidimensional Poverty Indices disaggregated by population subgroups based on the Alkire and Foster method (2011) <doi:10.1016/j.jpubeco.2010.11.006>. This includes the calculation of standard errors and confidence intervals. Other partial indices such as incidence, intensity and indicator-specific measures as well as intertemporal changes analysis can also be estimated. The standard errors and confidence intervals are calculated considering the complex survey design.
Nonparametric survival function estimates and semiparametric regression for the multivariate failure time data with right-censoring. For nonparametric survival function estimates, the Volterra, Dabrowska, and Prentice-Cai estimates for bivariate failure time data may be computed as well as the Dabrowska estimate for the trivariate failure time data. Bivariate marginal hazard rate regression can be fitted for the bivariate failure time data. Functions are also provided to compute (bootstrap) confidence intervals and plot the estimates of the bivariate survival function. For details, see "The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach", Prentice, R., Zhao, S. (2019, ISBN: 978-1-4822-5657-4), CRC Press.
User-friendly Shiny apps for designing and evaluating phase I cancer clinical trials, with the aim to estimate the maximum tolerated dose (MTD) of a novel drug, using a Bayesian decision procedure based on logistic regression.
Distributions that are typically used for exposure rating in general insurance, in particular to price reinsurance contracts. The vignette shows code snippets to fit the distribution to empirical data. See, e.g., Bernegger (1997) <doi:10.2143/AST.27.1.563208> freely available on-line.
Simplifies Brazilian names phonetically using a custom metaphoneBR algorithm that preserves ending vowels. Useful for name matching processing preserving gender information carried generally by ending vowels in Portuguese. Mation (2025) <doi:10.6082/uchicago.15104>.
This package provides a simple way to construct and maintain functions that keep state i.e. remember their argument lists. This can be useful when one needs to repeatedly invoke the same function with only a small number of argument changes at each invocation.
Fits mixed Poisson regression models (Poisson-Inverse Gaussian or Negative-Binomial) on data sets with response variables being count data. The models can have varying precision parameter, where a linear regression structure (through a link function) is assumed to hold on the precision parameter. The Expectation-Maximization algorithm for both these models (Poisson Inverse Gaussian and Negative Binomial) is an important contribution of this package. Another important feature of this package is the set of functions to perform global and local influence analysis. See Barreto-Souza and Simas (2016) <doi:10.1007/s11222-015-9601-6> for further details.
This GUI for the mi package walks the user through the steps of multiple imputation and the analysis of completed data.
Recursively calculates mass properties (mass, center of mass, moments and products of inertia, and optionally, their uncertainties) for arbitrary decomposition trees. R. L. Zimmerman, J. H. Nakai. (2005) <https://www.sawe.org/product/paper-3360/>).
This package provides functions for row-reducing and inverting matrices with entries in many of the finite fields (those with a prime number of elements). With this package, users will be able to find the reduced row echelon form (RREF) of a matrix and calculate the inverse of a (square, invertible) matrix.
This package contains a set of tools for constructing and coercing into and from the "mdate" class. This date class implements ISO 8601-2:2019(E) and allows regular dates to be annotated to express unspecified date components, approximate or uncertain date components, date ranges, and sets of dates. This is useful for describing and analysing temporal information, whether historical or recent, where date precision may vary.
Two method new of multigroup and simulation of data. The first technique called multigroup PCA (mgPCA) this multivariate exploration approach that has the idea of considering the structure of groups and / or different types of variables. On the other hand, the second multivariate technique called Multigroup Dimensionality Reduction (MDR) it is another multivariate exploration method that is based on projections. In addition, a method called Single Dimension Exploration (SDE) was incorporated for to analyze the exploration of the data. It could help us in a better way to observe the behavior of the multigroup data with certain variables of interest.
This package provides a comprehensive collection of linkage methods for agglomerative hierarchical clustering on a matrix of proximity data (distances or similarities), returning a multifurcated dendrogram or multidendrogram. Multidendrograms can group more than two clusters when ties in proximity data occur, and therefore they do not depend on the order of the input data. Descriptive measures to analyze the resulting dendrogram are additionally provided. <doi:10.18637/jss.v114.i02>.
This package implements an MCMC sampler for the posterior distribution of arbitrary time-homogeneous multivariate stochastic differential equation (SDE) models with possibly latent components. The package provides a simple entry point to integrate user-defined models directly with the sampler's C++ code, and parallelizes large portions of the calculations when compiled with OpenMP'.
Algorithms to build set partitions and commutator matrices and their use in the construction of multivariate d-Hermite polynomials; estimation and derivation of theoretical vector moments and vector cumulants of multivariate distributions; conversion formulae for multivariate moments and cumulants. Applications to estimation and derivation of multivariate measures of skewness and kurtosis; estimation and derivation of asymptotic covariances for d-variate Hermite polynomials, multivariate moments and cumulants and measures of skewness and kurtosis. The formulae implemented are discussed in Terdik (2021, ISBN:9783030813925), "Multivariate Statistical Methods".
Calculate multiple statistics with confidence intervals for matched case-control data including risk difference, risk ratio, relative difference, and the odds ratio. Results are equivalent to those from Stata', and you can choose how to format your input data. Methods used are those described on page 56 the Stata documentation for "Epitab - Tables for Epidemologists" <https://www.stata.com/manuals/repitab.pdf>.
Analyze multilevel networks as described in Lazega et al (2008) <doi:10.1016/j.socnet.2008.02.001> and in Lazega and Snijders (2016, ISBN:978-3-319-24520-1). The package was developed essentially as an extension to igraph'.