Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Novel method to unbiasedly include studies with Non-statistically Significant Unreported Effects (NSUEs) in a meta-analysis. First, the function calculates the interval where the unreported effects (e.g., t-values) should be according to the threshold of statistical significance used in each study. Afterward, the method uses maximum likelihood techniques to impute the expected effect size of each study with NSUEs, accounting for between-study heterogeneity and potential covariates. Multiple imputations of the NSUEs are then randomly created based on the expected value, variance, and statistical significance bounds. Finally, it conducts a restricted-maximum likelihood random-effects meta-analysis separately for each set of imputations, and it performs estimations from these meta-analyses. Please read the reference in metansue for details of the procedure.
Define, manipulate and plot meshes on simplices, spheres, balls, rectangles and tubes. Directional and other multivariate histograms are provided.
Providing the kubernetes-like class ManagedCloudProvider as a child class of the CloudProvider class in the DockerParallel package. The class is able to manage the cloud instance made by the non-kubernetes cloud service. For creating a provider for the non-kubernetes cloud service, the developer needs to define a reference class inherited from ManagedCloudProvider and define the method for the generics runDockerWorkerContainers(), getDockerWorkerStatus() and killDockerWorkerContainers(). For more information, please see the vignette in this package and <https://CRAN.R-project.org/package=DockerParallel>.
To create maps from tiles, maptiles downloads, composes and displays tiles from a large number of providers (e.g. OpenStreetMap', Stadia', Esri', CARTO', or Thunderforest').
This package provides graph-constrained regression methods in which regularization parameters are selected automatically via estimation of equivalent Linear Mixed Model formulation. riPEER (ridgified Partially Empirical Eigenvectors for Regression) method employs a penalty term being a linear combination of graph-originated and ridge-originated penalty terms, whose two regularization parameters are ML estimators from corresponding Linear Mixed Model solution; a graph-originated penalty term allows imposing similarity between coefficients based on graph information given whereas additional ridge-originated penalty term facilitates parameters estimation: it reduces computational issues arising from singularity in a graph-originated penalty matrix and yields plausible results in situations when graph information is not informative. riPEERc (ridgified Partially Empirical Eigenvectors for Regression with constant) method utilizes addition of a diagonal matrix multiplied by a predefined (small) scalar to handle the non-invertibility of a graph Laplacian matrix. vrPEER (variable reducted PEER) method performs variable-reduction procedure to handle the non-invertibility of a graph Laplacian matrix.
This package implements an estimator for relative risk based on the median unbiased estimator. The relative risk estimator is well defined and performs satisfactorily for a wide range of data configurations. The details of the method are available in Carter et al (2010) <doi:10.1111/j.1467-9876.2010.00711.x>.
Shiny web application to run meta-analyses. Essentially a graphical front-end to package meta for R. Can be useful as an educational tool, and for quickly analyzing and sharing meta-analyses. Provides output to quickly fill in GRADE (Grading of Recommendations, Assessment, Development and Evaluations) Summary-of-Findings tables. Importantly, it allows further processing of the results inside R, in case more specific analyses are needed.
This package provides functions for estimating structural equation models using instrumental variables.
Function and support for medication and dosing information extraction from free-text clinical notes. Medication entities for the basic medExtractR implementation that can be extracted include drug name, strength, dose amount, dose, frequency, intake time, dose change, and time of last dose. The basic medExtractR is outlined in Weeks, Beck, McNeer, Williams, Bejan, Denny, Choi (2020) <doi: 10.1093/jamia/ocz207>. The extended medExtractR_tapering implementation is intended to extract dosing information for more tapering schedules, which are far more complex. The tapering extension allows for the extraction of additional entities including dispense amount, refills, dose schedule, time keyword, transition, and preposition.
This package provides tools to generate HTML interfaces for adaptive and non-adaptive tests using the shiny package (Chalmers (2016) <doi:10.18637/jss.v071.i05>). Suitable for applying unidimensional and multidimensional computerized adaptive tests (CAT) using item response theory methodology and for creating simple questionnaires forms to collect response data directly in R. Additionally, optimal test designs (e.g., "shadow testing") are supported for tests that contain a large number of item selection constraints. Finally, package contains tools useful for performing Monte Carlo simulations for studying test item banks.
This package provides a collection of matrix functions for teaching and learning matrix linear algebra as used in multivariate statistical methods. Many of these functions are designed for tutorial purposes in learning matrix algebra ideas using R. In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm. In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D and for rendering matrix expressions and equations in LaTeX.
This package provides a comprehensive set of tools for working with order statistics, including functions for simulating order statistics, censored samples (Type I and Type II), and record values from various continuous distributions. Additionally, it offers functions to compute moments (mean, variance, skewness, kurtosis) of order statistics for several continuous distributions. These tools assist researchers and statisticians in understanding and analyzing the properties of order statistics and related data. The methods and algorithms implemented in this package are based on several published works, including Ahsanullah et al (2013, ISBN:9789491216831), Arnold and Balakrishnan (2012, ISBN:1461236444), Harter and Balakrishnan (1996, ISBN:9780849394522), Balakrishnan and Sandhu (1995) <doi:10.1080/00031305.1995.10476150>, Genç (2012) <doi:10.1007/s00362-010-0320-y>, Makouei et al (2021) <doi:10.1016/j.cam.2021.113386> and Nagaraja (2013) <doi:10.1016/j.spl.2013.06.028>.
This package provides a graphical user interface tool to estimate ploidy from DNA cells stained with fluorescent dyes and analyzed by flow cytometry, following the methodology of Gómez-Muñoz and Fischer (2024) <doi:10.1101/2024.01.24.577056>. Features include multiple file uploading and configuration, peak fluorescence intensity detection, histogram visualizations, peak error curation, ploidy and genome size calculations, and easy results export.
This package provides methods for model-based clustering of multinomial counts under the presence of covariates using mixtures of multinomial logit models, as implemented in Papastamoulis (2023) <DOI:10.1007/s11634-023-00547-5>. These models are estimated under a frequentist as well as a Bayesian setup using the Expectation-Maximization algorithm and Markov chain Monte Carlo sampling (MCMC), respectively. The (unknown) number of clusters is selected according to the Integrated Completed Likelihood criterion (for the frequentist model), and estimating the number of non-empty components using overfitting mixture models after imposing suitable sparse prior assumptions on the mixing proportions (in the Bayesian case), see Rousseau and Mengersen (2011) <DOI:10.1111/j.1467-9868.2011.00781.x>. In the latter case, various MCMC chains run in parallel and are allowed to switch states. The final MCMC output is suitably post-processed in order to undo label switching using the Equivalence Classes Representatives (ECR) algorithm, as described in Papastamoulis (2016) <DOI:10.18637/jss.v069.c01>.
Model selection and averaging for regression and mixtures, inclusing Bayesian model selection and information criteria (BIC, EBIC, AIC, GIC).
Visualizes multiple sequence alignments dynamically within the Shiny web application framework.
This package provides tools for phase-type distributions including the following variants: continuous, discrete, multivariate, in-homogeneous, right-censored, and regression. Methods for functional evaluation, simulation and estimation using the expectation-maximization (EM) algorithm are provided for all models. The methods of this package are based on the following references. Asmussen, S., Nerman, O., & Olsson, M. (1996). Fitting phase-type distributions via the EM algorithm, Olsson, M. (1996). Estimation of phase-type distributions from censored data, Albrecher, H., & Bladt, M. (2019) <doi:10.1017/jpr.2019.60>, Albrecher, H., Bladt, M., & Yslas, J. (2022) <doi:10.1111/sjos.12505>, Albrecher, H., Bladt, M., Bladt, M., & Yslas, J. (2022) <doi:10.1016/j.insmatheco.2022.08.001>, Bladt, M., & Yslas, J. (2022) <doi:10.1080/03461238.2022.2097019>, Bladt, M. (2022) <doi:10.1017/asb.2021.40>, Bladt, M. (2023) <doi:10.1080/10920277.2023.2167833>, Albrecher, H., Bladt, M., & Mueller, A. (2023) <doi:10.1515/demo-2022-0153>, Bladt, M. & Yslas, J. (2023) <doi:10.1016/j.insmatheco.2023.02.008>.
In the omics data association studies, it is common to conduct the p-value corrections to control the false significance. Beyond the P-value corrections, E-value is recently studied to facilitate multiple testing correction based on V. Vovk and R. Wang (2021) <doi:10.1214/20-AOS2020>. This package provides E-value calculation for DNA methylation data and RNA-seq data. Currently, five data formats are supported: DNA methylation levels using DMR detection tools (BiSeq, DMRfinder, MethylKit, Metilene and other DNA methylation tools) and RNA-seq data. The relevant references are listed below: Katja Hebestreit and Hans-Ulrich Klein (2022) <doi:10.18129/B9.bioc.BiSeq>; Altuna Akalin et.al (2012) <doi:10.18129/B9.bioc.methylKit>.
Testing CRAN and Bioconductor mirror speed by recording download time of src/base/COPYING (for CRAN) and packages/release/bioc/html/ggtree.html (for Bioconductor).
R Client for the Microsoft Cognitive Services Text-to-Speech REST API, including voice synthesis. A valid account must be registered at the Microsoft Cognitive Services website <https://azure.microsoft.com/en-us/products/ai-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
Estimation of models with dependent variable left-censored at zero. Null values may be caused by a selection process Cragg (1971) <doi:10.2307/1909582>, insufficient resources Tobin (1958) <doi:10.2307/1907382>, or infrequency of purchase Deaton and Irish (1984) <doi:10.1016/0047-2727(84)90067-7>.
Fits and tests meta regression models and generates a number of useful test statistics: next to t- and z-tests, the likelihood ratio, bartlett corrected likelihood ratio and permutation tests are performed on the model coefficients.
Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) <doi:10.1109/TMI.2018.2829802> implemented in python.
Data sets related to the Islas Malvinas /// Sets de datos relacionados a las Islas Malvinas - La Nación Argentina ratifica su legà tima e imprescriptible soberanà a sobre las islas Malvinas, Georgias del Sur y Sándwich del Sur y los espacios marà timos e insulares correspondientes, por ser parte integrante del territorio nacional. La recuperación de dichos territorios y el ejercicio pleno de la soberanà a, respetando el modo de vida de sus habitantes y conforme a los principios del Derecho Internacional, constituyen un objetivo permanente e irrenunciable del pueblo argentino.